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Inverted pendulum

Degree of freedom: p and θ.

State vector:

x :=
[
p ṗ θ θ̇

]T
Dynamics: ẋ(t) = f(x(t), u(t), t).

Desired states: xf =
[
0 0 π 0

]T
.

Question: Is there F such that u(t) = −Fx(t) helps us achieve this?
Strategy:

Linearize the model about θ = π : ẋ(t) = Ax(t) +Bu(t).

Construct F if (A,B) controllable.

Use the control law u = −Fx in the actual system.
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Dynamics: ẋ(t) = f(x(t), u(t), t).

Desired states: xf =
[
0 0 π 0

]T
.

Question: Is there an input u(t) that helps us achieve this?

Question: Is
there F such that u(t) = −Fx(t) helps us achieve this? Strategy:

Linearize the model about θ = π : ẋ(t) = Ax(t) +Bu(t).
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LQR problem

Problem
Given a system

d

dt
x(t) = Ax(t) +Bu(t)

with initial condition x0, find an input u(t) such that

J(x(t), u(t), x0) =

∫ ∞
0

(xTQx+ uTRu)dt,

where Q > 0 and R > 0 is minimized and limt→∞ x(t) = 0.

xTQx: penality on deviation from reference. uTRu: penality on input.
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Typical optimal control problem

Problem

Find an admissible control u∗(t) which causes the system

ẋ(t) = a (x(t), u(t), t)

to follow an admissible trajectory x∗(t) that minimizes the performance
measure

J = h(x(tf ), tf ) +

∫ tf

t0

g (x(t), u(t), t) dt

x∗(t) : Optimal state trajectories, u∗(t) : Optimal control.

We may not know u∗(t) exists.

If u∗(t) exists, it may not be unique.

J∗ = h(x∗(tf ), tf ) +

∫ tf

t0

g (x∗(t), u∗(t), t) dt 6 h(x(tf ), tf ) +

∫ tf

t0

g (x(t), u(t), t) dt.
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Organization

Part - I
Calculus of Variation

Part - II
Dynamic Programming
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Calculus of variation approach

Unconstrained optimization

min
x

y = min
x

f(x)

Necessary:
dy

dx
= 0

Sufficiency:
d2y

dx2
> 0.

Problem: Find the stationary function of a functional.

Functional: Function of functions. For example

J(x(t), u(t), t) =

∫ ∞
0

(x(t)TQx(t) + u(t)TRu(t))dt.
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Calculus of Variation

Problem: Find the stationary function of a functional.

Find shortest path between A and B.

L =

∫ B

A

dS

=

∫ B

A

√
dx2 + dy2

=

∫ x2

x1

√
1 +

(
dy

dx

)2

dx

Find a function y = f(x) between A and B such that L is minimized.
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Necessary conditions for stationary functions

Problem (COV based optimization problem)

Find y = f(x) such that the functional∫ x2

x1

F

(
x, y,

dy

dx

)
dx

is minimized/maximized.

Necessary condition for stationarity:

Euler-Lagrange Equation

∂F

∂y
− d

dx

∂F

∂y′
= 0
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Example

Problem

Find a function y = f(x) between
A and B such that

L =

∫ x2

x1

√
1 +

(
dy

dx

)2

dx

is minimized.

E.L Equation:

∂F

∂y
− d

dx

∂F

∂y′
= 0.

Here F =

√
1 +

(
dy
dx

)2

.

d

dx

 ∂

∂y′

(
1 +

(
dy

dx

)2
)1/2

 = 0⇒ d2y

dx2
= 0⇒ y(x) = c1x+ c2.

On using boundary conditions: y(x1) = y1 and y(x2) = y2, we will get
c1 = y2−y1

x2−x1
and c2 = y1x2−y2x1

x2−x1
.
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Calculus of variation approach

Constrained optimization problem: Minimize F (x, y) subject to the
constraint g(x, y) = c.

Lagrange multipliers are introduced: ∇F (x, y) + λ∇ (g(x, y)− c) = 0.

For example:

Maximizef(x, y) = x2y on the set x2 + y2 = 1.

Using the Lagrange multiplier idea (2 equations):

∇x2y + λ∇(x2 + y2 − 1) =

[
2x
2y

]
+ λ

[
2xy
x2

]
= 0.

The other equation: x2 + y2 = 1.

Three equations and three unknowns (x, y, λ): Solvable.

Langrangian: L(x, y, λ) := f(x, y) + λ(x2 + y2 − 1)

Just solve ∇L =
[
∂L
∂x

∂L
∂y

∂L
∂λ

]T
= 0.
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Constraint minimization of functionals

Find the condition for y∗(t) to be an extremal for a functional of the form

J(x) =

∫ tf

t0

g (y(x), ẏ(x), x) dt

where y is an (n+m)× 1 vector of functions n,m > 1 that is required to
satisfy n relations of the form

fi(y(x), x) = 0, i = 1, 2, . . . , n.

We use the method of Lagrange multipliers –

ga(y(x), ẏ(x), x) := g(y(x), ẏ(x), x) + pT (x)f(y(x), x)

Necessary condition for y∗(t) to be an extremal

∂

∂y
ga

(
y∗(t), ẏ∗(x), p∗(x), x

)
− d

dx

[
∂

∂y′

(
y∗(x), y′

∗
(x), p∗(x), x

)]
= 0.
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Necessary condition for optimal control

Problem

Find an admissible control u∗(t) that causes the system

ẋ(t) = a (x(t), u(t), t)

with initial condition x0 to follow an admissible trajectory x∗(t) that
minimizes the performance measure

J(u(t)) = h(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)dt

for t0 specified.

h(x(tf ), tf ) =

∫ tf

t0

d

dt
[h(x(t), t)] dt+ h(x(t0, t0).

Chayan Bhawal (IIT Guwahati) September 24, 2020 11 / 31



Necessary condition for optimal control

Problem

Find an admissible control u∗(t) that causes the system
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Necessary condition for optimal control

Define Hamiltonian

H := g(x(t), u(t), t) + pT (t) [a(x(t), u(t), t)]

At (x∗(t), u∗(t), p∗(t)) for all t ∈ [t0, tf ]

d

dt
x∗ =

∂H

∂p

d

dt
p∗ = −∂H

∂x

0 =
∂H

∂u

[ ∂
∂x
h(x∗(tf ), tf )− p∗(tf )

]T
δxf +

[
H (x∗(tf ), u∗(tf ), p∗(tf ), tf )

+
∂

∂t
h(x∗(tf ), tf )

]
δtf = 0.
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LQR Problem

Problem
The plant is described by the linear state equations

ẋ(t) = Ax(t) +Bu(t), A ∈ Rn×n, B ∈ Rn×p.

The performance index to be minimized is

J =
1

2
xT (tf )Hx(tf ) +

1

2

∫ tf

t0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt

The final time tf is fixed, H,Q ∈ Rn×n, R ∈ Rp×p, H,Q > 0 and R > 0.

Hamiltonian

H (x(t), u(t), p(t), t) =
1

2

[
xT (t)Qx(t) + uT (t)Ru(t)

]
+ pT (t)

(
Ax(t) +Bu(t)

)
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1

2

[
xT (t)Qx(t) + uT (t)Ru(t)

]
+ pT (t)

(
Ax(t) +Bu(t)

)

At (x∗(t), u∗(t), p∗(t)) for all t ∈ [t0, tf ]

d

dt
x∗(t) = Ax∗(t) +Bu∗(t)

d

dt
p∗(t) = −Qx∗(t)−AT p∗(t)

u∗(t) = −R−1BT p∗(t).

1

2

[
∂

∂x

(
xT (tf )Hx(tf )

)
− p∗(tf )

]T
δxf = 0⇒ p∗(tf ) = Hx∗(tf ).
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xT (t)Qx(t) + uT (t)Ru(t)

]
+ pT (t)

(
Ax(t) +Bu(t)

)

At (x∗(t), u∗(t), p∗(t)) for all t ∈ [t0, tf ]

d

dt

[
x∗(t)
p∗(t)

]
=

[
A −BR−1BT

−Q −AT
] [
x∗(t)
p∗(t)

]

p∗(tf ) = Hx∗(tf ).

Optimal control

u∗(t) = −R−1BT p∗(t).
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LQR Problem

At (x∗(t), u∗(t), p∗(t)) for all t ∈ [t0, tf ]

d

dt

[
x∗(t)
p∗(t)

]
=

[
A −BR−1BT

−Q −AT
] [
x∗(t)
p∗(t)

]
⇒
[
x∗(tf )
p∗(tf )

]
= Φ(tf , t)

[
x∗(t)
p∗(t)

]
[
x∗(tf )
p∗(tf )

]
=

[
Φ11(tf , t) Φ12(tf , t)
Φ21(tf , t) Φ22(tf , t)

] [
x∗(t)
p∗(t)

]
⇒
[
x∗(tf )
Hx∗(tf )

]
=

[
Φ11(tf , t) Φ12(tf , t)
Φ21(tf , t) Φ22(tf , t)

] [
x∗(t)
p∗(t)

]
⇒ p∗(t) = [Φ22(tf , t)−HΦ12(tf , t)]

−1
[HΦ11(tf , t)− Φ21(tf , t)]︸ ︷︷ ︸

K(t)

x∗(t)
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LQR Problem

At (x∗(t), u∗(t), p∗(t)) for all t ∈ [t0, tf ]

d

dt
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x∗(t)
p∗(t)

]
=

[
A −BR−1BT

−Q −AT
] [
x∗(t)
p∗(t)

]
[
x∗(tf )
p∗(tf )

]
=

[
Φ11(tf , t) Φ12(tf , t)
Φ21(tf , t) Φ22(tf , t)

] [
x∗(t)
p∗(t)

]
⇒
[
x∗(tf )
Hx∗(tf )

]
=

[
Φ11(tf , t) Φ12(tf , t)
Φ21(tf , t) Φ22(tf , t)

] [
x∗(t)
p∗(t)

]
⇒ p∗(t) = [Φ22(tf , t)−HΦ12(tf , t)]

−1
[HΦ11(tf , t)− Φ21(tf , t)]︸ ︷︷ ︸

K(t)

x∗(t)

Optimal control

u∗(t) = −R−1BTK(t)x∗(t).
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LQR Problem

At (x∗(t), u∗(t), p∗(t)) for all t ∈ [t0, tf ]

d

dt

[
x∗(t)
p∗(t)

]
=

[
A −BR−1BT

−Q −AT
] [
x∗(t)
p∗(t)

]

p∗(t) = K(t)x∗(t)

⇒ ṗ∗(t) = K̇(t)x∗(t) +K(t)ẋ∗(t)

⇒ −Qx∗(t)−ATK(t)x∗(t) = K̇(t)x∗(t) +K(t)(Ax∗(t)−BR−1BT p∗(t)

⇒ −Qx∗(t)−ATK(t)x∗(t) = K̇(t)x∗(t) +K(t)(Ax∗(t)−BR−1BTKx∗(t)

⇒ K̇(t) = ATK(t) +K(t)A+Q−BR−1BT
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LQR Problem

At (x∗(t), u∗(t), p∗(t)) for all t ∈ [t0, tf ]

d

dt

[
x∗(t)
p∗(t)

]
=

[
A −BR−1BT

−Q −AT
] [
x∗(t)
p∗(t)

]

p∗(t) = K(t)x∗(t)

⇒ ṗ∗(t) = K̇(t)x∗(t) +K(t)ẋ∗(t)

⇒ −Qx∗(t)−ATK(t)x∗(t) = K̇(t)x∗(t) +K(t)(Ax∗(t)−BR−1BT p∗(t)

⇒ −Qx∗(t)−ATK(t)x∗(t) = K̇(t)x∗(t) +K(t)(Ax∗(t)−BR−1BTKx∗(t)

⇒ K̇(t) = ATK(t) +K(t)A+Q−BR−1BT

Differential Riccati Equation

K̇(t) = ATK(t) +K(t)A+Q−BR−1BT
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LQR Problem – finite horizon

Problem
The plant is described by the linear state equations

ẋ(t) = Ax(t) +Bu(t), A ∈ Rn×n, B ∈ Rn×p.

With fixed tf , the performance index to be minimized is (H,Q > 0 and R > 0)

J =
1

2
xT (tf )Hx(tf ) +

1

2

∫ tf

t0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt

Optimal control

u∗(t) = −R−1BTK(t)x∗(t).

Differential Riccati Equation

K̇(t) = ATK(t) +K(t)A+Q−BR−1BT

Chayan Bhawal (IIT Guwahati) September 24, 2020 16 / 31



LQR Problem – infinite horizon

Problem

The plant is described by the linear state equations (Given x0 and xf = 0)

ẋ(t) = Ax(t) +Bu(t), A ∈ Rn×n, B ∈ Rn×p.

The performance index to be minimized is (H,Q > 0 and R > 0)

J =
1

2

∫ ∞
0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt

Optimal control

u∗(t) = −R−1BTKx∗(t) = −Fx∗(t), where F := −R−1BTK.

Algebraic Riccati Equation

0 = ATK +KA+Q−BR−1BT
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Organization

Part - I
Calculus of Variation

Part - II
Dynamic Programming
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Dynamic Programming

Bellman’s optimality criterion –

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

If a − b − e is the optimal path from a
to e, then b−e is the optimal path from
b to e.

Jbce < Jbe ⇒ Jab + Jbce < Jab + Jbe = J∗abe.

Contradiction!
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Dynamic Programming - Example

Bellman’s optimality criterion –

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

C∗bcf = Jbc + J∗cf

C∗bdf = Jbd + J∗df

C∗bef = Jbe + J∗ef

min(C∗bcf , C
∗
bdf , C

∗
bef ) is the optimal cost.
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The travelling salesman

Problem: Travel from a to h in minimum time.
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The travelling salesman

Cost: Cgh = 2 = C∗gh.
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The travelling salesman

Cost: Cfh = Cfg + Cgh = 5 = C∗fh.
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The travelling salesman

Cost: Ceh = Cef + C∗fh = 7= C∗eh Ceh = 8.
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The travelling salesman

Cost: Ceh = Cef + C∗fh = 7 = C∗eh Ceh = 8.
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The travelling salesman

Cost: Cdh = Cde + C∗eh = 10 = C∗dh.
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The travelling salesman

Cost: Cch = Ccd + C∗dh = 15= C∗dh Cch = Ccf + C∗fh = 8.
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The travelling salesman

Cost: Cch = Ccd + C∗dh = 15= C∗ch Cch = Ccf + C∗fh = 8.
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The travelling salesman

Cost: Cbh = Cbc + C∗ch = 17= C∗bh.
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The travelling salesman

Cost: Cah = Cab + C∗bh = 22= C∗dh Cah = Cad + C∗dh = 18.
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The travelling salesman

Cost: Cah = Cab + C∗bh = 22 Cah = Cad + C∗dh = 18 = C∗ah.
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The travelling salesman

Current
Intersection

α

Heading
ui

Next
intersection

xi

Min cost
α to h
via xi

Min cost
to reach h

from α

Optimal
heading at

α
g N h 2 + 0 = 2 2 N
f E g 3 + 2 = 5 5 E

e
E h 8 + 0 = 8

7 S
S f 2 + 5 = 7

d E e 3 + 7 = 10 10 E

c
N d 5 + 10 = 15

8 E
E f 3 + 5 = 8

b E c 9 + 8 = 17 17 E

a
E d 8 + 10 = 18

18 E
S b 5 + 17 = 22
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Dynamic programming & Optimal control

Single-state single-input case
For a system with the following dynamics:

d

dt
x(t) = ax(t) + bu(t)

minimize the performance index:

J = x2(T ) + α

∫ T

0

u2(t)dt.

System needs to be approximated by difference equation.

Integral needs to be approximated by summation.

Divide 0 to T in N equal segments of size ∆t, i.e, N∆t = T .
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Single-input single-state

Approximation of the system:

x(t+ ∆t)− x(t)

∆t
' ax(t) + bu(t)⇒ x(t+ ∆t) ' (1 + a∆t)x(t) + b∆tu(t).

Assume ∆t is small enough:
u(t) piecewise continuous with changes at t = 0,∆t, . . . , (N − 1)∆t.

For t = k∆t:

x((k + 1)∆t) = [1 + a∆t]x(k∆t) + b∆tu(k∆t), k = 0, 1, . . . , N − 1.

Discretized system

x[k + 1] = [1 + a∆t]x[k] + b∆tu[k]
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Single-input single-state

Discretized system

x[k + 1] = [1 + a∆t]x[k] + b∆tu[k]

Discretization of the performance index:

J ' x2(N∆t) + α

[∫ ∆t

0
u2(0)dt+

∫ 2∆

∆
u2(∆t)dt+ · · ·+

∫ N∆t

(N−1)∆t
u2([N − 1]∆t)dt

]
' x2[N ] + α∆t

[
u[0] + u[1] + · · ·+ u2[N − 1]

]

Discretized performance index

J = x2[N ] + α∆t
∑N−1
k=0 u2[k].
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Single-input single-state example

a = 0, b = 1, α = 2, and T = 2.

System

x(t) = u(t)

Cost

J = x2(2)+2
∫ 2

0
u2(t)dt

Constraint

0 6 x(t) 6 1.5, −1 6 u(t) 6 1

Discretized problem: Assuming ∆t = 1 (N = 2) Given the system

x[k + 1] = x[k] + u[k]

minimize the performance index:

J = x2[2] + 2u2[0] + 2u2[1].

subject to the constraints:

0 6 x[k] 6 1.5, for k = 0, 1, 2

−1 6 u[k] 6 1, for k = 0, 1

Problem from “Optimal Control Theory” authored by Donald E. Kirk
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Hamiltonian-Jacobi-Bellman equation

An alternate method without discretizing the system.

Given the system

d

dt
x(t) = a (x(t), u(t), t)

minimize the performance index

J = h(x(tf ), tf ) +

∫ tf

t0

g (x(τ), u(τ), τ) dτ

Define

J∗(x(t), t) = min
u(τ)

t6τ6tf

{
h(x(tf ), tf ) +

∫ tf

t0

g (x(τ), u(τ), τ) dτ

}
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Hamiltonian-Jacobi-Bellman equation

Define

J∗(x(t), t) = min
u(τ)

t6τ6tf

{
h(x(tf ), tf ) +

∫ tf

t0

g (x(τ), u(τ), τ) dτ

}

Subdividing the integral:

J∗(x(t), t) = min
u(τ)

t6τ6tf

{
h(x(tf ), tf ) +

∫ t+∆t

t0

g (x(τ), u(τ), τ) dτ

+

∫ tf

t+∆t

g (x(τ), u(τ), τ) dτ

}
By principle of optimality:

J∗(x(t), t) = min
u(τ)

t6τ6tf

{∫ t+∆t

t0

gdτ + J∗(x(t+ ∆t), t+ ∆t)

}
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HJB equations

By principle of optimality:

J∗(x(t), t) = min
u(τ)

t6τ6tf

{∫ t+∆t

t0

gdτ + J∗(x(t+ ∆t), t+ ∆t)

}

Using Taylor series expansion and ∆t small assumption:

∂

∂t
J∗(x(t), t) + min

u(t)

{
g(x(t), u(t), t) +

∂

∂x
(J∗(x(t), t))

T
[a(x(t), u(t), t]

}
= 0.

Define

H := g(x(t), u(t), t) +
∂

∂x
(J∗(x(t), t))

T
[a(x(t), u(t), t]

HJB equation

J∗t (x(t), u(t), t) + min
u(t)
H(x(t), u(t), J∗x , t) = 0

Boundary condition: J∗ (x(tf ), tf ) = h (x(tf ), tf )
.
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Thank you
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