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Introduction

Lyapunov equations and its applications

System: d
dtx = Ax, where A ∈ Rn×n.

Lyapunov equation: for Q ∈ Rn×n and K ∈ Rn×n.

ATK +KA+Q = 0

Stability analysis Linear-quadratic optimization

Model order reduction Filtering

Objective: Compute solutions of circulant Lyapunov equations.
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Introduction

Circulant Lyapunov operators

LA(P ) := AP + PAT is called circulant if A is a circulant matrix.

A =


a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2
...

...
. . .

...
...

a2 a3 · · · a0 a1
a1 a2 · · · an−1 a0

 ∈ Rn×n

We exploit the structure of A to design the proposed algorithm.

Basis for the space of circulant matrices: {I, E,E2, · · · , En−1} with

E :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0


A = a0I + a1E + · · ·+ an−1E

n−1

=
n−1∑
k=0

akE
k.
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Introduction

Two-variable polynomials & circulant Lyap. operator

LA(K) = ATK +KA, where A :=
∑n−1

k=0 akE
k.

Define v(x, y) := XTVY, where V ∈ Cn×n.

Consider the map

Π : C[x, y] −→ C[x, y]/A,

where A := 〈xn − 1, yn − 1〉 ⊂ C[x, y].

Then the following are equivalent

(1) LA(V ) = γV .

(2) Π
(∑n−1

k=0 ak(xk + yk)v(x, y)
)

= γv(x, y).

X := col
(
1, x, x2, . . . , xn−1

)
, Y := col

(
1, y, y2, . . . , yn−1

)
.

Polynomial interpretation of eigenmatrix V
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Introduction

Two-variable polynomials & circulant Lyap. operator

Polynomial ring C[x, y] and the ideal A := 〈xn − 1, yn − 1〉.

Define the map Π : C[x, y]→ C[x, y]/A.

Given G,R ∈ Cn×n define g(x, y) := XTGY, r(x, y) := XTRY.

Suppose g(x, y), r(x, y) ∈ C[x, y] satisfy

Π
( n−1∑
k=0

ak(x
k + yk)g(x, y)

)
= r(x, y),

where k ∈ N and k < n.

Suppose
∑n−1

k=0 2ak cos
(
π(m−n)k

n

)
ω

(m+n)k
2 6= 0 for every

m,n = 0, 1, 2, . . . , n− 1.

Then, g(x, y) is unique.
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Introduction

Two-variable polynomials & circulant Lyap. operator

LA(K) = ATK +KA, where A :=
∑n−1

k=0 akE
k.

Polynomial ring C[x, y] and the ideal A := 〈xn − 1, yn − 1〉.

Define the map Π : C[x, y]→ C[x, y]/A.

Let g(x, y), r(x, y) ∈ C[x, y] be such that

Π
( n−1∑
k=0

ak(x
k + yk)g(x, y)

)
= r(x, y).

Then LA(•) is nonsingular if and only if g(x, y) is unique.
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Introduction

2D-DFT & circulant Lyap. operator

Polynomial ring C[x, y] and the ideal A := 〈xn − 1, yn − 1〉.

Define the map Π : C[x, y] −→ C[x, y]/A.

Let P,Q,R ∈ Cn×n be such that

p(x, y) := XTPY, q(x, y) := XTQY, r(x, y) := XTRY.

Let F (P ),F (Q) and F (R) be the 2D-DFT matrices of P,Q and
R, respectively.

Then the following is true:

Π
(
p(x, y)q(x, y)

)
= r(x, y) if and only if F (P )�F (Q) = F (R).

� means Elementwise multiplication.
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Introduction

2D-DFT & circulant Lyap. operator

Lyapunov equation AP + PAT = Q with A :=
∑n−1

k=0 akE
k.

Define J ∈ Rn×n such that XTJY =
∑n−1

k=0 ak(x
k + yk).

Then, the following is true:

Π
( n−1∑
k=0

ak(x
k + yk)p(x, y)

)
= q(x, y)⇔ F (J)�F (P ) = F (Q).

P in the Lyapunov equation can be computed using:

P = F−1 (F (Q)�F (J)) ,

where F−1 is inverse DFT operation and � means element-wise
division.
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Introduction

2D-DFT & circulant Lyap. operator

Lyapunov equation AP + PAT = Q with A :=
∑n−1

k=0 akE
k.

Define J ∈ Rn×n such that XTJY =
∑n−1

k=0 ak(x
k + yk).

Then, the following is true:

Π
( n−1∑
k=0

ak(x
k + yk)p(x, y)

)
= q(x, y)⇔ F (J)�F (P ) = F (Q).

P in the Lyapunov equation can be computed using:

P = F−1 (F (Q)�F (J)) ,

where F−1 is inverse DFT operation and � means element-wise
division.

What if elements have zero?
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Introduction

When does F (J) has every element nonzero?

Circulant Lyapunov operator LA(•), where A :=
∑n−1

k=0 akE
k

Define J ∈ Rn×n such that XTJY :=
∑n−1

k=0 ak(x
k + yk).

Λ be the set of eigenvalues of LA(•).

Γ be the set of elements of F (J).

Then, Λ = Γ.

Further, the following are equivalent:
1 F (J) has every element nonzero.
2 LA(•) is nonsingular.
3 For each m,n = 0, 1, 2, . . . , n− 1

n−1∑
k=0

2ak cos

(
π(m− n)k

n

)
ω

(m+n)k
2 6= 0.

For A = a1E: n is odd
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Introduction

2D-DFT, Two-variable polynomials and Lyap. operator

Lyapunov operator LA(•) with A :=
∑n−1

k=0 akE
k

J ∈ Cn×n be such that
∑n−1

k=0 ak(x
k + yk) =: XTJY.

A := 〈xn − 1, yn − 1〉 ⊂ C[x, y].

Assume g(x, y), r(x, y) ∈ C[x, y] such that

Π
( n−1∑
k=0

ak(x
k + yk)g(x, y)

)
= r(x, y).

Then the following are equivalent:

(a) LA(•) is nonsingular.
(b) g(x, y) is unique.
(c) F (J) has every element nonzero.

Relation among circulant Lyapunov operator, two-variable polynomials
and 2D-DFT established.
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Introduction

Algorithm A 2D-DFT based algorithm to solve circulant Lyapunov
equation i.e. LA(P ) = Q.

Input: a0, a1, . . . , an−1 ∈ R, Q ∈ Cn×n and A =
∑n−1

k=0 akE
k.

Output: Solution P ∈ Cn×n of AP + PAT = Q.

1: Construct v :=
[
a1 a2 · · · an−1

]
and J :=

[
2a0 v
vT 0

]
.

2: Compute F (Q) =: [αmn] and F (J) =: [βmn], respectively.
3: for m = 1 : n do
4: for n = 1 : n do
5: if βmn 6= 0 then
6: κmn = αmn/βmn.
7: else
8: κmn = τ , where τ ∈ Cn×n.
9: end if

10: end for
11: end for
12: F (P ) = [κmn] and P = F−1

(
F (P )

)
.
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.

Lyap. equation has unique solution
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10: end for
11: end for
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(
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)
.
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Introduction

Examples

Lyapunov equation ATP + PA+Q = 0 with

A :=

0 0 2
2 0 0
0 2 0

 = 2×

0 0 1
1 0 0
0 1 0

 , Q :=

3 1 4
1 2 0
0 2 4

 , J =

0 2 0
2 0 0
0 0 0

.
2D-DFT matrices:

F (J) =

[
4 1−j

√
3 1+j

√
3

1−j
√
3 −2−j2

√
3 −2

1+j
√
3 −2 −2+j2

√
3

]
, F (Q) =

1

2

[
34 −5+j3

√
3 −5−j3

√
3

7+j3
√
3 −2 10−j6

√
3

7−j3
√
3 10+j6

√
3 −2

]
.

One can verify that

P = F−1 (F (Q)�F (J)) =
1

4

−2 6 1
−2 −1 4

5 4 2

 .
Lyap. equation has unique solution
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Introduction

Examples

Lyapunov equation ATP + PA+Q = 0 with

A =

[
0 2
2 0

]
, Q :=

[
3 1
1 3

]
, J =

[
0 2
2 0

]
.

2D-DFT matrices:

F (J) =

[
4 0
0 −4

]
,F (Q) =

[
8 0
0 4

]
.

Define F (P ) :=

[
κ1 κ2
κ3 κ4

]
.

Thus, we have [
4 0
0 −4

]
�
[
κ1 κ2
κ3 κ4

]
=

[
8 0
0 4

]
Using the inverse 2D-DFT:

P = F−1
(
F (P )

)
=

1

4

[
1 + (κ2 + κ3) 3 + (κ2 − κ3)
3− (κ2 − κ3) 1− (κ2 + κ3)

]
.

κ2, κ3 free

Infinitely many solutions
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Examples

Lyapunov equation ATP + PA+Q = 0 with

A =
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0 2
2 0

]
, Q :=
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3 1
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]
, J =
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0 2
2 0

]
.

2D-DFT matrices:
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.
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.

Thus, we have [
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0 −4
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κ3 κ4

]
=

[
10 4
−2 0

]
No solution
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Conclusion

Under a suitable projection map Π, two-variable polynomials are
related to circulant Lyapunov operators.

Nonsingularity of Lyapunov operators is a necessary and sufficient
condition for every element of the 2D-DFT matrix corresponding
to a suitably constructed matrix J to be nonzero.

Devised an algorithm to solve circulant Lyapunov equations.

Thank you.
Queries: bhawal@mpi-magdeburg.mpg.de
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