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Problem statement
Consider a controllable system with state-space dynamics

d

dt
x(t) = Ax(t) + Bu(t), where A ∈ Rn×n, B ∈ Rn×m.

Infinite-horizon linear quadratic regulator (LQR) problem

For every initial condition x0 ∈ Rn, find an input u(t) () that minimizes
the functional

J (x0, u(t)) :=

∫ ∞
0

[
x(t)
u(t)

]T [
Q S
ST R

] [
x(t)
u(t)

]
dt, where

[
Q S
ST R

]
> 0

and limt→∞ x(t) = 0.

For
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] [
x(t)
u(t)

]
dt, where

[
Q S
ST R

]
> 0

and limt→∞ x(t) = 0.

Cm
imp := {f = freg + fimp | freg ∈ C∞(R,Rm)|R+

, fimp =
∑k

i=0 aiδ
(i)(t), ai ∈ Rm, k ∈ N}.
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∫ ∞
0

[
x(t)
u(t)

]T [
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] [
x(t)
u(t)

]
dt, where

[
Q S
ST R

]
> 0

and limt→∞ x(t) = 0.

For R > 0 (Regular case)

ATK +KA+Q− (KB + S)R−1(BTK + ST ) = 0 u(t) = −R−1(BTKmax + ST )x(t)
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Literature review

System: d
dtx = Ax + Bu Cost matrix:

[
Q S

ST R

]
> 0, det(R) = 0.

Theorem (Ferrante and Ntogramatzidis, Automatica 2014)

Singular LQR problem is solvable using a static state-feedback controller
m

there exists K = KT ∈ Rn×n such that

ATK + KA + Q− (KB + S)R†(BTK + ST ) = 0,

ker(R) ⊆ ker(S + KB).

Constraint equation
ARE

Constrained Generalized Continuous Algebraic Riccati Equation - CGCARE.
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Literature review

System: d
dtx = Ax + Bu Cost matrix:

[
Q S

ST R

]
> 0, det(R) = 0.

Theorem (Ferrante and Ntogramatzidis, Automatica 2014)

Singular LQR problem is solvable using a static state-feedback controller
m

CGCARE is solvable.

Theorem (Bhawal and Pal, IEEE L-CSS 2019)

Singular LQR problems corresponding to single-input sytems can be solved
using proportional-derivative (PD) controllers.

When is CGCARE solvable
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Hamiltonian pencils
For R = 0,

[
Q S

ST R

]
> 0⇒ Q > 0 and S = 0.

Cost function:∫∞
0

(
xTQx

)
dt.

Pontryagin’s Maximum principle: (x: states, z: costates, u: input)

In 0 0
0 In 0
0 0 0


︸ ︷︷ ︸

E

d

dt

xz
u

 =

 A 0 B
−Q −AT 0

0 BT 0


︸ ︷︷ ︸

H

xz
u

 .

(E,H): Hamiltonian matrix pair, (sE −H): Hamiltonian matrix
pencil.

Output-nulling representation:

d

dt

[
x
z

]
=

[
A 0
−Q −AT

]
︸ ︷︷ ︸

Â

[
x
z

]
+

[
B
0

]
︸︷︷︸
B̂

u, and 0 =
[
0 BT

]︸ ︷︷ ︸
Ĉ

[
x
z

]
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Ĉ

[
x
z

]

Chayan Bhawal, Debasattam Pal Solvability of CGCARE for zero-input cost 5/11



Hamiltonian pencils
Cost function:

∫∞
0

(
xTQx

)
dt.

Pontryagin’s Maximum principle: (x: states, z: costates, u: input)In 0 0
0 In 0
0 0 0


︸ ︷︷ ︸

E

d

dt

xz
u

 =

 A 0 B
−Q −AT 0

0 BT 0


︸ ︷︷ ︸

H

xz
u

 .

(E,H): Hamiltonian matrix pair, (sE −H): Hamiltonian matrix
pencil.

Output-nulling representation:

d

dt

[
x
z

]
=

[
A 0
−Q −AT

]
︸ ︷︷ ︸

Â
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CGCARE solvability

Output-nulling representation:

d

dt

[
x
z

]
=

[
A 0
−Q −AT

]
︸ ︷︷ ︸

Â

[
x
z

]
+

[
B
0

]
︸︷︷︸
B̂

u, and 0 =
[
0 BT

]︸ ︷︷ ︸
Ĉ

[
x
z

]

Lemma

CGCARE with R = 0 solvable

m

P(s) := Ĉ(sI2n − Â)−1B̂ ≡ 0 (as a rational matrix).

For the R singular case: more necessary and sufficient conditions in
Bhawal, Qais, and Pal, IEEE L-CSS 2019.
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Autonomy?
Ĉ(sI2n − Â)−1B̂ ≡ 0 ⇔ ĈÂkB̂ = 0 for all k ∈ {0, 1, 2, · · · }.

Note that

ĈB̂ =
[
0 BT

] [B
0

]
= 0.

ĈÂB̂ =
[
0 BT

] [ A 0
−Q −AT

] [
B
0

]
= −BTQB = 0⇒ QB = 0.

...

ĈÂkB̂ = 0⇒ (AkB)TQAkB = 0⇒ QAkB = 0.

Thus for Ĉ(sI2n − Â)−1B̂ ≡ 0 we must have

Q
[
B AB · · · An−1B

]
= 0.

Since (A,B) is controllable, this is not possible unless Q = 0.
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ĈB̂ =
[
0 BT

] [B
0

]
= 0.
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Ĉ(sI2n − Â)−1B̂ ≡ 0 ⇔ ĈÂkB̂ = 0 for all k ∈ {0, 1, 2, · · · }.
Note that
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Ĉ(sI2n − Â)−1B̂ ≡ 0 ⇔ ĈÂkB̂ = 0 for all k ∈ {0, 1, 2, · · · }.
Note that
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CGCARE solvability

Theorem (Main result)

Corresponding to a singular LQR problem with R = 0 (zero input cost) the
following statements are equivalent:

1. Ĉ(sI2n − Â)−1B̂ 6≡ 0.

2. CGCARE is not solvable.

3. There exists no proportional state-feedback controller that solves the
singular LQR Problem.
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Example

d
dtx =

[
1 0 1
1 0 1
1 1 0

]
x +

[
0
1
0

]
u

Cost:
∫∞
0

(
xTQx

)
dt,

Q :=
[
0 0 0
0 0 0
0 0 1

]
.

CGCARE: ATK +KA+Q = 0 and ker(R) ⊆ ker(KB)⇒ KB = 0.

Let K =

k1 k2 k4
k2 k3 k5
k4 k5 k6

.

From the constrained equation KB = 0: k2 = k3 = k5 = 0.

We have from ATK + KA + Q = 0: 2(k1 + k4) k4 k1 + k4 + k6
k4 0 k6

k1 + k4 + k6 k6 2k4 + 1

 = 0

CGCARE not solvable. No P state-feedback controller
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PD controller

d
dtx =

[
1 0 1
1 0 1
1 1 0

]
x +

[
0
1
0

]
u

Cost:
∫∞
0

(
xTQx

)
dt,

Q :=
[
0 0 0
0 0 0
0 0 1

]
.

V1 =
[
1 1 −2

]T
, V3 = 0.

Define X1 =
[
V1 B AB

]
=

 1 0 0
1 1 0
−2 0 1

.

Design the controllers:

Fp :=
[
V3 f0 f1

]
X−11 and Fd :=

[
0 1 −f0

]
X−11 .

where f0, f1 ∈ R.

Chosing f0 = 0 and f1 = f : Fp =
[
2f 0 f

]
and Fd =

[
−1 1 0

]
.

PD controller: u = Fpx + Fdẋ.

Closed loop system: (In −BFd)
d
dtx = (A + BFp)x.

Choose f : det(s(In −BFd)− (A + BFp)) 6= 0.

Chayan Bhawal, Debasattam Pal Solvability of CGCARE for zero-input cost 10/11



PD controller

d
dtx =

[
1 0 1
1 0 1
1 1 0

]
x +

[
0
1
0

]
u

Cost:
∫∞
0

(
xTQx

)
dt,

Q :=
[
0 0 0
0 0 0
0 0 1

]
.

Eigenvalues of (E,H) are {−1,+1}.

V1 =
[
1 1 −2

]T
, V3 = 0.

Define X1 =
[
V1 B AB

]
=

 1 0 0
1 1 0
−2 0 1

.

Design the controllers:

Fp :=
[
V3 f0 f1

]
X−11 and Fd :=

[
0 1 −f0

]
X−11 .

where f0, f1 ∈ R.

Chosing f0 = 0 and f1 = f : Fp =
[
2f 0 f

]
and Fd =

[
−1 1 0

]
.

PD controller: u = Fpx + Fdẋ.
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Choose f : det(s(In −BFd)− (A + BFp)) 6= 0.

E =

In 0 0
0 In 0
0 0 0

, H =

 A 0 B
−Q −AT 0

0 BT 0


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Conclusion

LQR problems

R = 0

R 6= 0
det(R) = 0

R > 0

CGCARE not solvable
detP(s) 6= 0

CGCARE not solvable
detP(s) = 0

CGCARE solvable

PD controllers

W.I.P

P controllers

Check
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