





On solvability of CGCARE for LQR problems with zero input-cost Chayan Bhawal, Debasattam Pal December 13, 2019 CSC-MPI Magdeburg and IIT Bombay



### Consider a controllable system with state-space dynamics

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \text{ where } A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}.$$



Consider a controllable system with state-space dynamics

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \text{ where } A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$$

Infinite-horizon linear quadratic regulator (LQR) problem

For every initial condition  $x_0 \in \mathbb{R}^n$ , find an input u(t) (from admissible input space) that minimizes the functional

$$J(x_0, u(t)) := \int_0^\infty \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^T \begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt, \text{ where } \begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0$$

and  $\lim_{t\to\infty} x(t) = 0$ .



Consider a controllable system with state-space dynamics

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \text{ where } A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$$

Infinite-horizon linear quadratic regulator (LQR) problem

For every initial condition  $x_0 \in \mathbb{R}^n$ , find an input u(t) (from admissible input space) that minimizes the functional

$$J\left(x_{0}, u(t)\right) := \int_{0}^{\infty} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^{T} \begin{bmatrix} Q & S \\ S^{T} & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt, \text{ where } \begin{bmatrix} Q & S \\ S^{T} & R \end{bmatrix} \ge 0$$

and  $\lim_{t\to\infty} x(t) = 0$ .

For R > 0 (Regular case)

 $A^{T}K + KA + Q - (KB + S)R^{-1}(B^{T}K + S^{T}) = 0 \qquad u(t) = -R^{-1}(B^{T}K_{\max} + S^{T})x(t)$ 



Consider a controllable system with state-space dynamics

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \text{ where } A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$$

Infinite-horizon linear quadratic regulator (LQR) problem

For every initial condition  $x_0 \in \mathbb{R}^n$ , find an input u(t) (from admissible input space) that minimizes the functional

$$J\left(x_{0}, u(t)\right) := \int_{0}^{\infty} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^{T} \begin{bmatrix} Q & S \\ S^{T} & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt, \text{ where } \begin{bmatrix} Q & S \\ S^{T} & R \end{bmatrix} \ge 0$$

and  $\lim_{t\to\infty} x(t) = 0.$ 

For  $R \ge 0$ ,  $\det(R) = 0$  (Singular/degenerate case)

 $A^{T}K + KA + Q - (KB + S)R^{-1}(B^{T}K + S^{T}) = 0 \qquad u(t) = -R^{-1}(B^{T}K_{\max} + S^{T})x(t)$ 



### COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY Literature review

System: 
$$\frac{d}{dt}x = Ax + Bu$$
 Cost matrix:  $\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0, \det(R) = 0.$ 



# COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY LITERATURE REVIEW

System: 
$$\frac{d}{dt}x = Ax + Bu$$
 Cost matrix:  $\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0, \det(R) = 0.$   
Theorem (Ferrante and Ntogramatzidis, Automatica 2014)  
Singular LQR problem is solvable using a static state-feedback controller  
 $\uparrow$   
there exists  $K = K^T \in \mathbb{R}^{n \times n}$  such that  
 $A^T K + KA + Q - (KB + S)R^{\dagger}(B^T K + S^T) = 0,$   
 $\ker(R) \subseteq \ker(S + KB).$ 



# COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY LITERATURE REVIEW

System: 
$$\frac{d}{dt}x = Ax + Bu$$
 Cost matrix:  $\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0, \det(R) = 0.$   
Theorem (Ferrante and Ntogramatzidis, Automatica 2014)  
Singular LQR problem is solvable using a static state-feedback controller  
 $\uparrow$   
there exists  $K = K^T \in \mathbb{R}^{n \times n}$  such that  
 $A^T K + KA + Q - (KB + S)R^{\dagger}(B^T K + S^T) = 0, \text{ ARE}$   
 $\ker(R) \subseteq \ker(S + KB).$  Constraint equation



-

System: 
$$\frac{d}{dt}x = Ax + Bu$$
 Cost matrix:  $\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0$ , det $(R) = 0$ .  
Theorem (Ferrante and Ntogramatzidis, Automatica 2014)  
Singular LQR problem is solvable using a static state-feedback controller  
 $\uparrow$   
there exists  $K = K^T \in \mathbb{R}^{n \times n}$  such that  
 $A^T K + KA + Q - (KB + S)R^{\dagger}(B^T K + S^T) = 0$ , ARE  
 $\ker(R) \subseteq \ker(S + KB)$ . Constraint equation

Constrained Generalized Continuous Algebraic Riccati Equation - CGCARE.



## COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY LITERATURE REVIEW

System: 
$$\frac{d}{dt}x = Ax + Bu$$
 Cost matrix:  $\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0, \det(R) = 0.$   
Theorem (Ferrante and Ntogramatzidis, Automatica 2014)  
Singular LQR problem is solvable using a static state-feedback controller  
 $\begin{pmatrix} 1 \\ CGCARE \ is \ solvable. \end{pmatrix}$ 



System: 
$$\frac{d}{dt}x = Ax + Bu$$
 Cost matrix:  $\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0, \det(R) = 0.$   
Theorem (Ferrante and Ntogramatzidis, Automatica 2014)  
Singular LQR problem is solvable using a static state-feedback controller  
 $\begin{pmatrix} 1 \\ CGCARE \ is \ solvable. \end{pmatrix}$ 

### Theorem (Bhawal and Pal, IEEE L-CSS 2019)

Singular LQR problems corresponding to single-input sytems can be solved using proportional-derivative (PD) controllers.



System: 
$$\frac{d}{dt}x = Ax + Bu$$
 Cost matrix:  $\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0, \det(R) = 0.$   
Theorem (Ferrante and Ntogramatzidis, Automatica 2014)  
Singular LQR problem is solvable using a static state-feedback controller  
 $\begin{pmatrix} 1 \\ CGCARE \ is \ solvable. \end{pmatrix}$ 

### Theorem (Bhawal and Pal, IEEE L-CSS 2019)

Singular LQR problems corresponding to single-input sytems can be solved using proportional-derivative (PD) controllers.



System: 
$$\frac{d}{dt}x = Ax + Bu$$
 Cost matrix:  $\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0, \det(R) = 0.$   
Theorem (Ferrante and Ntogramatzidis, Automatica 2014)  
Singular LQR problem is solvable using a static state-feedback controller  
 $\uparrow$   
CGCARE is solvable.

### Theorem (Bhawal and Pal, IEEE L-CSS 2019)

Singular LQR problems corresponding to single-input sytems can be solved using proportional-derivative (PD) controllers.

When is CGCARE solvable?



System: 
$$\frac{d}{dt}x = Ax + Bu$$
 Cost matrix:  $\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0, \det(R) = 0.$   
Theorem (Ferrante and Ntogramatzidis, Automatica 2014)  
Singular LQR problem is solvable using a static state-feedback controller  
 $\uparrow$   
CGCARE is solvable.

### Theorem (Bhawal and Pal, IEEE L-CSS 2019)

Singular LQR problems corresponding to single-input sytems can be solved using proportional-derivative (PD) controllers.

When is CGCARE solvable for R = 0?



#### Hamiltonian pencils COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

• For 
$$R = 0$$
,  $\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \ge 0 \Rightarrow Q \ge 0$  and  $S = 0$ .

г



### Hamiltonian pencils

• Cost function:  $\int_0^\infty (x^T Q x) dt$ .



## COMPUTATIONAL METHODS IN Hamiltonian pencils

• Cost function:  $\int_0^\infty (x^T Q x) dt$ .

Pontryagin's Maximum principle: (x: states, z: costates, u: input)



## COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY HAMILTONIAN PENCILS

• Cost function:  $\int_0^\infty (x^T Q x) dt$ .

Pontryagin's Maximum principle: (x: states, z: costates, u: input)

$$\underbrace{\begin{bmatrix} I_{n} & 0 & 0\\ 0 & I_{n} & 0\\ 0 & 0 & 0 \end{bmatrix}}_{E} \frac{d}{dt} \begin{bmatrix} x\\ z\\ u \end{bmatrix} = \underbrace{\begin{bmatrix} A & 0 & B\\ -Q & -A^{T} & 0\\ 0 & B^{T} & 0 \end{bmatrix}}_{H} \begin{bmatrix} x\\ z\\ u \end{bmatrix}$$



## COMPUTATIONAL METHODS IN Hamiltonian pencils

• Cost function:  $\int_0^\infty (x^T Q x) dt$ .

Pontryagin's Maximum principle: (x: states, z: costates, u: input)

$$\underbrace{\begin{bmatrix} I_{\mathbf{n}} & 0 & 0\\ 0 & I_{\mathbf{n}} & 0\\ 0 & 0 & 0 \end{bmatrix}}_{E} \underbrace{\frac{d}{dt} \begin{bmatrix} x\\ z\\ u \end{bmatrix}}_{H} = \underbrace{\begin{bmatrix} A & 0 & B\\ -Q & -A^{T} & 0\\ 0 & B^{T} & 0 \end{bmatrix}}_{H} \begin{bmatrix} x\\ z\\ u \end{bmatrix}$$

(E, H): Hamiltonian matrix pair, (sE - H): Hamiltonian matrix pencil.



• Cost function:  $\int_0^\infty (x^T Q x) dt$ .

Pontryagin's Maximum principle: (x: states, z: costates, u: input)

$$\underbrace{\begin{bmatrix} I_{\mathbf{n}} & 0 & 0\\ 0 & I_{\mathbf{n}} & 0\\ 0 & 0 & 0 \end{bmatrix}}_{E} \underbrace{\frac{d}{dt} \begin{bmatrix} x\\ z\\ u \end{bmatrix}}_{H} = \underbrace{\begin{bmatrix} A & 0 & B\\ -Q & -A^{T} & 0\\ 0 & B^{T} & 0 \end{bmatrix}}_{H} \begin{bmatrix} x\\ z\\ u \end{bmatrix}$$

(E, H): Hamiltonian matrix pair, (sE - H): Hamiltonian matrix pencil.

Output-nulling representation:

$$\frac{d}{dt} \begin{bmatrix} x \\ z \end{bmatrix} = \underbrace{\begin{bmatrix} A & 0 \\ -Q & -A^T \end{bmatrix}}_{\widehat{A}} \begin{bmatrix} x \\ z \end{bmatrix} + \underbrace{\begin{bmatrix} B \\ 0 \end{bmatrix}}_{\widehat{B}} u, \text{ and } 0 = \underbrace{\begin{bmatrix} 0 & B^T \end{bmatrix}}_{\widehat{C}} \begin{bmatrix} x \\ z \end{bmatrix}$$



# COMPUTATIONAL METHODS IN CGCARE solvability

### Output-nulling representation:

$$\frac{d}{dt} \begin{bmatrix} x \\ z \end{bmatrix} = \underbrace{\begin{bmatrix} A & 0 \\ -Q & -A^T \end{bmatrix}}_{\widehat{A}} \begin{bmatrix} x \\ z \end{bmatrix} + \underbrace{\begin{bmatrix} B \\ 0 \end{bmatrix}}_{\widehat{B}} u, \text{ and } 0 = \underbrace{\begin{bmatrix} 0 & B^T \end{bmatrix}}_{\widehat{C}} \begin{bmatrix} x \\ z \end{bmatrix}$$



# COMPUTATIONAL METHODS IN CGCARE solvability

### Output-nulling representation:

$$\frac{d}{dt} \begin{bmatrix} x \\ z \end{bmatrix} = \underbrace{\begin{bmatrix} A & 0 \\ -Q & -A^T \end{bmatrix}}_{\widehat{A}} \begin{bmatrix} x \\ z \end{bmatrix} + \underbrace{\begin{bmatrix} B \\ 0 \end{bmatrix}}_{\widehat{B}} u, \text{ and } 0 = \underbrace{\begin{bmatrix} 0 & B^T \end{bmatrix}}_{\widehat{C}} \begin{bmatrix} x \\ z \end{bmatrix}$$

#### Lemma

CGCARE with 
$$R = 0$$
 solvable  
 $\widehat{}$   
 $\mathcal{P}(s) := \widehat{C}(sI_{2n} - \widehat{A})^{-1}\widehat{B} \equiv 0$  (as a rational matrix).

For the R singular case: more necessary and sufficient conditions in Bhawal, Qais, and Pal, IEEE L-CSS 2019.



## **Autonomy?**

$$\widehat{C}(sI_{2n} - \widehat{A})^{-1}\widehat{B} \equiv 0 \Leftrightarrow \widehat{C}\widehat{A}^k\widehat{B} = 0 \text{ for all } k \in \{0, 1, 2, \cdots\}.$$



### CONTROL THEORY Autonomy?

• 
$$\widehat{C}(sI_{2n} - \widehat{A})^{-1}\widehat{B} \equiv 0 \Leftrightarrow \widehat{C}\widehat{A}^k\widehat{B} = 0$$
 for all  $k \in \{0, 1, 2, \cdots\}$ .  
• Note that

$$\widehat{C}\widehat{B} = \begin{bmatrix} 0 & B^T \end{bmatrix} \begin{bmatrix} B \\ 0 \end{bmatrix} = 0.$$



### • $\widehat{C}(sI_{2n} - \widehat{A})^{-1}\widehat{B} \equiv 0 \Leftrightarrow \widehat{C}\widehat{A}^k\widehat{B} = 0$ for all $k \in \{0, 1, 2, \cdots\}$ . • Note that

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

$$\begin{split} \widehat{C}\widehat{B} &= \begin{bmatrix} 0 & B^T \end{bmatrix} \begin{bmatrix} B \\ 0 \end{bmatrix} = 0. \\ \widehat{C}\widehat{A}\widehat{B} &= \begin{bmatrix} 0 & B^T \end{bmatrix} \begin{bmatrix} A & 0 \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} B \\ 0 \end{bmatrix} = -B^TQB = 0 \Rightarrow QB = 0. \end{split}$$

**Autonomy?** 



• 
$$\widehat{C}(sI_{2n} - \widehat{A})^{-1}\widehat{B} \equiv 0 \Leftrightarrow \widehat{C}\widehat{A}^k\widehat{B} = 0$$
 for all  $k \in \{0, 1, 2, \cdots\}$ .  
• Note that

$$\widehat{C}\widehat{B} = \begin{bmatrix} 0 & B^T \end{bmatrix} \begin{bmatrix} B \\ 0 \end{bmatrix} = 0.$$
$$\widehat{C}\widehat{A}\widehat{B} = \begin{bmatrix} 0 & B^T \end{bmatrix} \begin{bmatrix} A & 0 \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} B \\ 0 \end{bmatrix} = -B^TQB = 0 \Rightarrow QB = 0.$$

 $\widehat{C}\widehat{A}^k\widehat{B}=0 \Rightarrow (A^kB)^TQA^kB=0 \Rightarrow QA^kB=0.$ 



### • $\widehat{C}(sI_{2n} - \widehat{A})^{-1}\widehat{B} \equiv 0 \Leftrightarrow \widehat{C}\widehat{A}^k\widehat{B} = 0$ for all $k \in \{0, 1, 2, \cdots\}$ . • Note that

$$\widehat{C}\widehat{B} = \begin{bmatrix} 0 & B^T \end{bmatrix} \begin{bmatrix} B \\ 0 \end{bmatrix} = 0.$$
$$\widehat{C}\widehat{A}\widehat{B} = \begin{bmatrix} 0 & B^T \end{bmatrix} \begin{bmatrix} A & 0 \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} B \\ 0 \end{bmatrix} = -B^TQB = 0 \Rightarrow QB = 0.$$

Autonomy?

 $\widehat{C}\widehat{A}^k\widehat{B}=0 \Rightarrow (A^kB)^TQA^kB=0 \Rightarrow QA^kB=0.$ 

• Thus for  $\widehat{C}(sI_{2n}-\widehat{A})^{-1}\widehat{B}\equiv 0$  we must have

$$Q\begin{bmatrix} B & AB & \cdots & A^{n-1}B\end{bmatrix} = 0.$$



$$(sI_{2n} - \widehat{A})^{-1}\widehat{B} \equiv 0 \Leftrightarrow \widehat{C}\widehat{A}^k\widehat{B} = 0$$
 for all  $k \in \{0, 1, 2, \cdots\}$ 

Note that

$$\widehat{C}\widehat{B} = \begin{bmatrix} 0 & B^T \end{bmatrix} \begin{bmatrix} B \\ 0 \end{bmatrix} = 0.$$
  
$$\widehat{C}\widehat{A}\widehat{B} = \begin{bmatrix} 0 & B^T \end{bmatrix} \begin{bmatrix} A & 0 \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} B \\ 0 \end{bmatrix} = -B^TQB = 0 \Rightarrow QB = 0.$$

Autonomy?

 $\widehat{C}\widehat{A}^k\widehat{B}=0 \Rightarrow (A^kB)^TQA^kB=0 \Rightarrow QA^kB=0.$ 

• Thus for  $\widehat{C}(sI_{2\mathbf{n}}-\widehat{A})^{-1}\widehat{B}\equiv 0$  we must have

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

$$Q\begin{bmatrix} B & AB & \cdots & A^{\mathbf{n}-1}B\end{bmatrix} = 0.$$

Since (A, B) is controllable, this is not possible unless Q = 0.

}.



### Theorem (Main result)

Corresponding to a singular LQR problem with R = 0 (zero input cost) the following statements are equivalent:

- 1.  $\widehat{C}(sI_{2n}-\widehat{A})^{-1}\widehat{B}\not\equiv 0.$
- 2. CGCARE is not solvable.



#### Theorem (Main result)

Corresponding to a singular LQR problem with R = 0 (zero input cost) the following statements are equivalent:

- 2. CGCARE is not solvable.
- 3. There exists no proportional state-feedback controller that solves the singular LQR Problem.



### Theorem (Main result)

Corresponding to a singular LQR problem with R = 0 (zero input cost) the following statements are equivalent:

- 1.  $\widehat{C}(sI_{2n}-\widehat{A})^{-1}\widehat{B}\not\equiv 0.$
- 2. CGCARE is not solvable.
- 3. There exists no proportional state-feedback controller that solves the singular LQR Problem.



$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} u$$

Cost: 
$$\int_0^\infty (x^T Q x) dt,$$
$$Q := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

**Example** 

Chayan Bhawal, Debasattam Pal



COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY Example

• 
$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u$$
 Cost:  $\int_0^\infty (x^T Q x) dt$ ,  
 $Q := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ .

• CGCARE:  $A^TK + KA + Q = 0$  and  $\ker(R) \subseteq \ker(KB) \Rightarrow KB = 0$ .



Example



COMPUTATIONAL METHODS IN Example

$$\begin{array}{l} \frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} u \\ \begin{array}{l} \text{Cost: } \int_{0}^{\infty} \left(x^{T}Qx\right) dt, \\ Q := \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}. \\ \\ \text{CGCARE: } A^{T}K + KA + Q = 0 \text{ and } \ker(R) \subseteq \ker(KB) \Rightarrow KB = 0. \\ \\ \text{Let } K = \begin{bmatrix} k_{1} & k_{2} & k_{4}\\ k_{2} & k_{3} & k_{5}\\ k_{4} & k_{5} & k_{6} \end{bmatrix}. \end{array}$$

From the constrained equation KB = 0:  $k_2 = k_3 = k_5 = 0$ .



COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY Example

$$\begin{array}{l} \bullet \ \frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} u & Cost: \ \int_0^\infty \left( x^T Q x \right) dt, \\ Q := \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 0 & 1 \end{bmatrix}. \\ \bullet \ \mathsf{CGCARE}: \ A^T K + KA + Q = 0 \ \mathsf{and} \ \mathsf{ker}(R) \subseteq \mathsf{ker}(KB) \Rightarrow KB = 0. \\ \bullet \ \mathsf{Let} \ K = \begin{bmatrix} k_1 & k_2 & k_4\\ k_2 & k_3 & k_5\\ k_4 & k_5 & k_6 \end{bmatrix}.$$

From the constrained equation KB = 0:  $k_2 = k_3 = k_5 = 0$ . We have from  $A^TK + KA + Q = 0$ :

$$\begin{bmatrix} 2(k_1+k_4) & k_4 & k_1+k_4+k_6\\ k_4 & 0 & k_6\\ k_1+k_4+k_6 & k_6 & 2k_4+1 \end{bmatrix} = 0$$



COMPUTATIONAL METHODS IN Example

$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} u$$

$$Cost: \int_{0}^{\infty} (x^{T}Qx) dt,$$

$$Q := \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

$$CGCARE: A^{T}K + KA + Q = 0 \text{ and } \ker(R) \subseteq \ker(KB) \Rightarrow KB = 0.$$

$$I \text{ et } K = \begin{bmatrix} k_{1} & k_{2} & k_{4}\\ k_{2} & k_{3} & k_{5} \end{bmatrix}.$$

$$\begin{bmatrix} k_4 & k_5 & k_6 \end{bmatrix}$$
  
From the constrained equation  $KB = 0$ :  $k_2 = k_3 = k_5 = 0$ .  
We have from  $A^TK + KA + Q = 0$ :

$$\begin{bmatrix} 2(k_1+k_4) & k_4 & k_1+k_4+k_6\\ k_4 & 0 & k_6\\ k_1+k_4+k_6 & k_6 & 2k_4+1 \end{bmatrix} = 0$$

CGCARE not solvable.

No P state-feedback controller



\_

- -

**PD** controller

$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} u$$

-

Cost: 
$$\int_0^\infty (x^T Q x) dt,$$
$$Q := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Chayan Bhawal, Debasattam Pal



COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY PD controller

• 
$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u$$
 Cost:  $\int_0^\infty (x^T Q x) dt$ ,  
 $Q := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ .

• Eigenvalues of (E, H) are  $\{-1, +1\}$ .

$$E = \begin{bmatrix} I_{\mathbf{n}} & 0 & 0\\ 0 & I_{\mathbf{n}} & 0\\ 0 & 0 & 0 \end{bmatrix}, \ H = \begin{bmatrix} A & 0 & B\\ -Q & -A^T & 0\\ 0 & B^T & 0 \end{bmatrix}$$



 $V := \begin{bmatrix} 1 & 1 & -2 & 2 & 0 & 0 \end{bmatrix}$ 

such that  $HV = EV\Gamma$ , where  $\Gamma = -1$ . Define  $V_1 = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T$ ,  $V_3 = 0$ .



- -

\_

# **PD** controller

• 
$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u$$
  
•  $V_1 = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T$ ,  $V_3 = 0$ .

Cost: 
$$\int_0^\infty (x^T Q x) dt,$$
$$Q := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$



E1

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY PD controller

$$\begin{array}{l} \bullet \ \frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} u \qquad \qquad \begin{array}{l} \operatorname{Cost:} \ \int_{0}^{\infty} \left( x^{T}Qx \right) dt, \\ Q := \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}. \\ \bullet \ V_{1} = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^{T}, \ V_{3} = 0. \\ \bullet \ Define \ X_{1} = \begin{bmatrix} V_{1} & B & AB \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 1 & 1 & 0\\ -2 & 0 & 1 \end{bmatrix}.$$

17

Δ



• 
$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u$$
  
•  $V_1 = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T$ ,  $V_3 = 0$ .

Cost: 
$$\int_0^\infty (x^T Q x) dt,$$
$$Q := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

~ 7

• Define 
$$X_1 = \begin{bmatrix} V_1 & B & AB \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

- -

Design the controllers:

 $F_{p} := \begin{bmatrix} V_{3} & f_{0} & f_{1} \end{bmatrix} X_{1}^{-1}$  and  $F_{d} := \begin{bmatrix} 0 & 1 & -f_{0} \end{bmatrix} X_{1}^{-1}$ . where  $f_0, f_1 \in \mathbb{R}$ .



• 
$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u$$
  
•  $V_1 = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T$ ,  $V_3 = 0$ .

\_

Cost: 
$$\int_0^\infty (x^T Q x) dt,$$
$$Q := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

~ 7

• Define 
$$X_1 = \begin{bmatrix} V_1 & B & AB \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

- -

Design the controllers:

-

$$F_{\mathbf{p}} := \begin{bmatrix} V_3 & f_0 & f_1 \end{bmatrix} X_1^{-1} \text{ and } F_{\mathbf{d}} := \begin{bmatrix} 0 & 1 & -f_0 \end{bmatrix} X_1^{-1}.$$
  
where  $f_0, f_1 \in \mathbb{R}$ .  
Chosing  $f_0 = 0$  and  $f_1 = f$ :  $F_{\mathbf{p}} = \begin{bmatrix} 2f & 0 & f \end{bmatrix}$  and  $F_{\mathbf{d}} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}.$ 

-



• 
$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u$$
  
•  $V_1 = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T$ ,  $V_3 = 0$ .

\_

Cost: 
$$\int_0^\infty \left( x^T Q x \right) dt,$$
$$Q := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

~ 7

• Define 
$$X_1 = \begin{bmatrix} V_1 & B & AB \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

- -

Design the controllers:

-

$$F_{p} := \begin{bmatrix} V_{3} & f_{0} & f_{1} \end{bmatrix} X_{1}^{-1} \text{ and } F_{d} := \begin{bmatrix} 0 & 1 & -f_{0} \end{bmatrix} X_{1}^{-1}.$$

-

where  $f_0, f_1 \in \mathbb{R}$ .

Chosing 
$$f_0 = 0$$
 and  $f_1 = f$ :  $F_p = \begin{bmatrix} 2f & 0 & f \end{bmatrix}$  and  $F_d = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$ .

PD controller:  $u = F_p x + F_d \dot{x}$ .



• 
$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} u$$
  
•  $V_1 = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T$ ,  $V_3 = 0$ .

\_

Cost: 
$$\int_0^\infty (x^T Q x) dt$$
$$Q := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

• Define 
$$X_1 = \begin{bmatrix} V_1 & B & AB \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

Design the controllers:

-

$$F_{p} := \begin{bmatrix} V_{3} & f_{0} & f_{1} \end{bmatrix} X_{1}^{-1}$$
 and  $F_{d} := \begin{bmatrix} 0 & 1 & -f_{0} \end{bmatrix} X_{1}^{-1}$ .

where  $f_0, f_1 \in \mathbb{R}$ .

Chosing 
$$f_0 = 0$$
 and  $f_1 = f$ :  $F_p = \begin{bmatrix} 2f & 0 & f \end{bmatrix}$  and  $F_d = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$ .

- PD controller:  $u = F_p x + F_d \dot{x}$ .
- Closed loop system:  $(I_n BF_d)\frac{d}{dt}x = (A + BF_p)x$ .



• 
$$\frac{d}{dt}x = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u$$
  
•  $V_1 = \begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T, V_3 = 0.$ 

Cost: 
$$\int_0^\infty \left( x^T Q x \right) dt$$
$$Q := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

• Define 
$$X_1 = \begin{bmatrix} V_1 & B & AB \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

Design the controllers:

-

$$F_{p} := \begin{bmatrix} V_{3} & f_{0} & f_{1} \end{bmatrix} X_{1}^{-1}$$
 and  $F_{d} := \begin{bmatrix} 0 & 1 & -f_{0} \end{bmatrix} X_{1}^{-1}$ .

where  $f_0, f_1 \in \mathbb{R}$ .

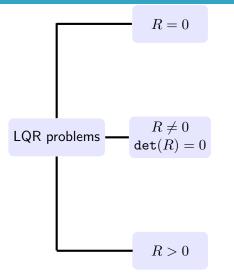
Chosing 
$$f_0 = 0$$
 and  $f_1 = f$ :  $F_p = \begin{bmatrix} 2f & 0 & f \end{bmatrix}$  and  $F_d = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$ .

PD controller:  $u = F_p x + F_d \dot{x}$ .

#### Closed loop system: $(I_n - BF_d)\frac{d}{dt}x = (A + BF_p)x$ . Choose $f: \det(s(I_n - BF_d) - (A + BF_p)) \neq 0$ .

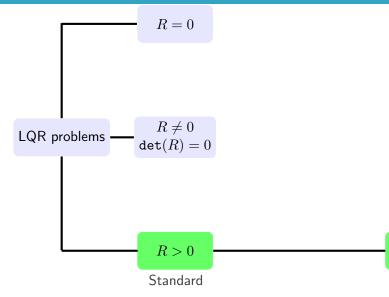


#### Conclusion





### Conclusion



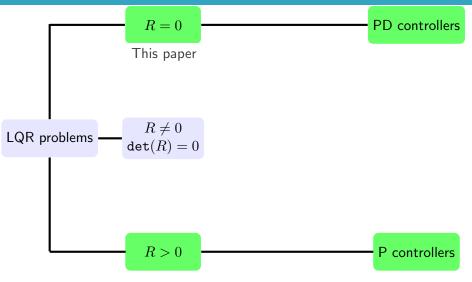
Chayan Bhawal, Debasattam Pal

Solvability of CGCARE for zero-input cost

P controllers

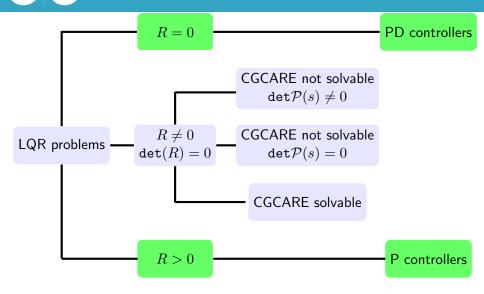


#### Conclusion



Chayan Bhawal, Debasattam Pal

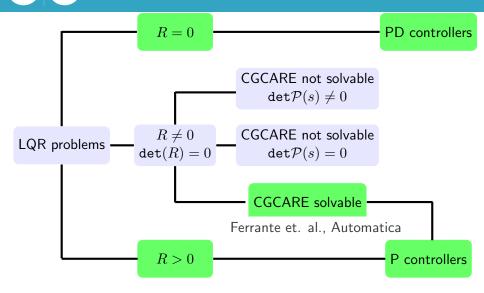
## ODS IN Conclusion



Chayan Bhawal, Debasattam Pal

CSC

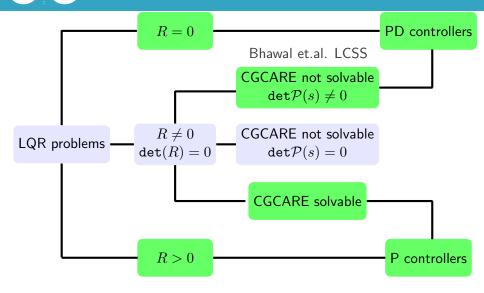
## HODS IN Conclusion



Chayan Bhawal, Debasattam Pal

CSC

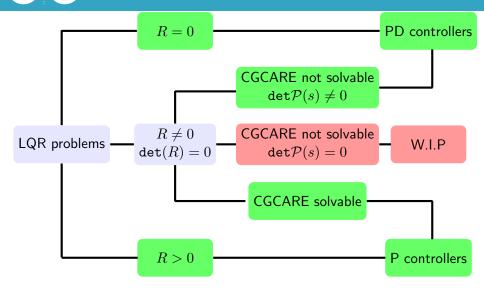
ONAL METHODS IN Conclusion



Chayan Bhawal, Debasattam Pal

CSC

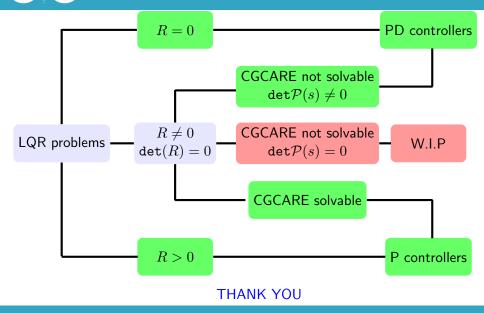
## COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY CONCLUSION



Chayan Bhawal, Debasattam Pal

CSC

## COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY CONCLUSION



Chayan Bhawal, Debasattam Pal

CSC