On the link between storage functions of allpass systems and Gramians

Chayan Bhawal, Debasattam Pal and Madhu N. Belur

Control and Computing Group (CC Group) Department of Electrical Engineering Indian Institute of Technology Bombay

IEEE Conference on Decision and Control, Melbourne December 14, 2017

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

• A dissipative system

has no source of energy.
 can only absorb energy.
 can store energy.

• <u>Rate-change-stored-energy</u> + <u>Dissipated power</u> = <u>Power supplied</u> $\underbrace{\frac{d}{dt}Q_{\Psi}(w)}_{Q_{\Delta}(w)} + \underbrace{\underbrace{Dissipated power}_{Q_{\Delta}(w)}}_{Q_{\Sigma}(w)} = \underbrace{\underbrace{Power supplied}_{Q_{\Sigma}(w)}}_{Q_{\Sigma}(w)}$

- Dissipative systems : $\frac{d}{dt}Q_{\Psi}(w) \leq Q_{\Sigma}(w)$.
- Power supplied with respect to system variable: $Q_{\Sigma}(w) = w^T \Sigma w$. e.g. Supply rate: w = (u, y) : $Q_{\Sigma}(w) = w^T \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} w = 2u^T y$.

• Stored energy: Storage function¹ $Q_{\Psi}(w) = x^T K x$.

¹Trentelman and Willems, SCL, Every storage function is a state function, 1997.

C.Bhawal, D.Pal, M.Belur (CC Grp.)

• A dissipative system

has no source of energy.
 can only absorb
 can store energy.

• Rate-change-stored-energy + Dissipated power = Power supplied $\underbrace{\frac{d}{dt}Q_{\Psi}(w)}_{Q_{\Delta}(w)} + \underbrace{\underbrace{\text{Dissipated power}}_{Q_{\Delta}(w)} = \underbrace{\underbrace{\text{Power supplied}}_{Q_{\Sigma}(w)}$

• Dissipative systems : $\frac{d}{dt}Q_{\Psi}(w) \leq Q_{\Sigma}(w)$.

• Power supplied with respect to system variable: $Q_{\Sigma}(w) = w^T \Sigma w$. e.g. Supply rate: w = (u, y) : $Q_{\Sigma}(w) = w^T \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} w = 2u^T y$.

• Stored energy: Storage function¹ $Q_{\Psi}(w) = x^T K x$.

¹Trentelman and Willems, SCL, Every storage function is a state function, 1997.

C.Bhawal, D.Pal, M.Belur (CC Grp.)

• A dissipative system

has no source of energy.
 can only absorb
 can store energy.

• <u>Rate-change-stored-energy</u> + <u>Dissipated power</u> = <u>Power supplied</u> $\underbrace{\frac{d}{dt}Q_{\Psi}(w)}_{Q_{\Delta}(w)} + \underbrace{\underbrace{\text{Dissipated power}}_{Q_{\Delta}(w)} = \underbrace{\underbrace{\text{Power supplied}}_{Q_{\Sigma}(w)}$

- Dissipative systems : $\frac{d}{dt}Q_{\Psi}(w) \leq Q_{\Sigma}(w)$.
- Power supplied with respect to system variable: $Q_{\Sigma}(w) = w^T \Sigma w$. e.g. Supply rate: w = (u, y) : $Q_{\Sigma}(w) = w^T \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} w = 2u^T y$.
- Stored energy: Storage function¹ $Q_{\Psi}(w) = x^T K x$.

¹ Trentelman and Willems, SCL, Every storage function is a state function, 1997.

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

• A dissipative system

has no source of energy.
 can only absorb energy.
 can store energy.

• <u>Rate-change-stored-energy</u> + <u>Dissipated power</u> = <u>Power supplied</u> $\underbrace{\frac{d}{dt}Q_{\Psi}(w)}_{Q_{\Delta}(w)} + \underbrace{\underbrace{\text{Dissipated power}}_{Q_{\Delta}(w)} = \underbrace{\underbrace{\text{Power supplied}}_{Q_{\Sigma}(w)}$

- Dissipative systems : $\frac{d}{dt}Q_{\Psi}(w) \leq Q_{\Sigma}(w)$.
- Power supplied with respect to system variable: $Q_{\Sigma}(w) = w^T \Sigma w$. e.g. Supply rate: w = (u, y) : $Q_{\Sigma}(w) = w^T \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} w = 2u^T y$.

• Stored energy: Storage function¹ $Q_{\Psi}(w) = x^T K x$.

¹Trentelman and Willems, SCL, Every storage function is a state function, 1997.

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

• A dissipative system

has no source of energy.
 can only absorb energy.
 can store energy.

• <u>Rate-change-stored-energy</u> + <u>Dissipated power</u> = <u>Power supplied</u> $\underbrace{\frac{d}{dt}Q_{\Psi}(w)}_{Q_{\Delta}(w)} + \underbrace{\underbrace{\text{Dissipated power}}_{Q_{\Delta}(w)} = \underbrace{\underbrace{\text{Power supplied}}_{Q_{\Sigma}(w)}$

- Dissipative systems : $\frac{d}{dt}Q_{\Psi}(w) \leq Q_{\Sigma}(w)$.
- Power supplied with respect to system variable: $Q_{\Sigma}(w) = w^T \Sigma w$. e.g. Supply rate: w = (u, y) : $Q_{\Sigma}(w) = w^T \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} w = 2u^T y$.

• Stored energy: Storage function¹ $Q_{\Psi}(w) = x^T K x$.

¹Trentelman and Willems, SCL, Every storage function is a state function, 1997.

Passivity and bounded-real systems

Dissipative systems

$$\frac{d}{dt} \left(x^T K x \right) \leqslant Q_{\Sigma}(w), \text{ where } w = (u, y).$$

	Positive-real	Bounded-real
Supply rate Σ	$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$	$\begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$
Dissipation inequality	$\frac{d}{dt}\left(x^T K x\right) \leqslant 2u^T y$	$\frac{d}{dt}\left(x^T K x\right) \leqslant u^T u - y^T y$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

EE Dept. IIT Bombay

Passivity and bounded-real systems

Conservative systems

$$\frac{d}{dt} \left(x^T K x \right) = Q_{\Sigma}(w), \text{ where } w = (u, y).$$

	Positive-real	Bounded-real
Supply rate Σ	$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$	$\begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$
Dissipation inequality	$\frac{d}{dt}\left(x^T K x\right) \leqslant 2u^T y$	$\frac{d}{dt}\left(x^T K x\right) \leqslant u^T u - y^T y$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

EE Dept. IIT Bombay 3

Passivity and bounded-real systems

Conservative systems

$$\frac{d}{dt}\left(x^T K x\right) = Q_{\Sigma}(w), \text{ where } w = (u, y).$$

	Positive-real	Bounded-real
Supply rate Σ	$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$	$\begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$
Dissipation	$\frac{d}{dt}\left(x^T K x\right) \leq 2u^T u$	$\frac{d}{dt}\left(x^{T}Kx\right) \leq u^{T}u - u^{T}u$
inequality	dt (w m g) < 2w g	dt (w 11w) < w w g g
Conservative	$\frac{d}{d}(r^T K r) - 2 u^T u$	$\frac{d}{d}(r^T K r) - u^T u - u^T u$
counterpart	dt (x - 11x) = 2u - g	dt (x Hx) = u u g g
Name	Lossless	Allpass
Example	$G(s) = \frac{s}{s^2 + 1}$	$G(s) = \frac{s-1}{s+1}$
Example	(LC circuits)	(allows all frequencies to pass)

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

nian EE Dept.

EE Dept. IIT Bombay

• System $\mathfrak{B} : \frac{d}{dt}x = Ax + Bu, \ y = Cx + Du$, (Minimal) $A \in \mathbb{R}^{n \times n}, \ C, B^T \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{p \times p}$.

Necessary condition for all pass: $I - D^T D = 0$.

- Dissipation equation: $\frac{d}{dt}(x^T K x) = u^T u y^T y$.
- Linear Matrix Equations (LME): Allpass if and only if there exists $K = K^T \in \mathbb{R}^{n \times n}$ $\begin{bmatrix} A^T K + KA + C^T C & KB + C^T \\ B^T K + C & 0 \end{bmatrix} = 0$
- Rewriting the LME: Allpass if and only if there exists $K = K^T \in \mathbb{R}^{n \times 1}$

 $A^T K + KA + C^T C = 0$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

• System $\mathfrak{B} : \frac{d}{dt}x = Ax + Bu, \ y = Cx + Du$, (Minimal) $A \in \mathbb{R}^{n \times n}, \ C, B^T \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{p \times p}$.

Necessary condition for all pass: $I - D^T D = 0$.

- Dissipation equation: $\frac{d}{dt}(x^TKx) = u^Tu y^Ty$.
- Linear Matrix Equations (LME): Allpass if and only if there exists $K = K^T \in \mathbb{R}^{n \times n}$ $\begin{bmatrix} A^T K + KA + C^T C & KB + C^T \\ B^T K + C & 0 \end{bmatrix} = 0$
- Rewriting the LME: Allpass if and only if there exists $K = K^T \in \mathbb{R}^{n \times n}$

$$A^T K + KA + C^T C = 0$$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

• System $\mathfrak{B} : \frac{d}{dt}x = Ax + Bu, \ y = Cx + Du$, (Minimal) $A \in \mathbb{R}^{n \times n}, \ C, B^T \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{p \times p}$.

Necessary condition for all pass: $I - D^T D = 0$.

- Dissipation equation: $\frac{d}{dt}(x^TKx) = u^Tu y^Ty$.
- Linear Matrix Equations (LME): Allpass if and only if there exists $K = K^T \in \mathbb{R}^{n \times n}$ $\begin{bmatrix} A^T K + KA + C^T C & KB + C^T \\ B^T K + C & 0 \end{bmatrix} = 0$

• Rewriting the LME: Allpass if and only if there exists $K = K^T \in \mathbb{R}^{n \times r}$

 $A^T K + K A + C^T C = 0$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

• System $\mathfrak{B} : \frac{d}{dt}x = Ax + Bu, \ y = Cx + Du$, (Minimal) $A \in \mathbb{R}^{n \times n}, \ C, B^T \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{p \times p}$.

Necessary condition for all pass: $I - D^T D = 0$.

- Dissipation equation: $\frac{d}{dt}(x^TKx) = u^Tu y^Ty$.
- Linear Matrix Equations (LME): Allpass if and only if there exists $K = K^T \in \mathbb{R}^{n \times n}$ $\begin{bmatrix} A^T K + KA + C^T C & KB + C^T \end{bmatrix}$

$$\begin{bmatrix} A^{T}K + KA + C^{T}C & KB + C^{T} \\ B^{T}K + C & 0 \end{bmatrix} = 0$$

• Rewriting the LME: Allpass if and only if there exists $K = K^T \in \mathbb{R}^{n \times n}$

$$A^{T}K + KA + C^{T}C = 0$$
$$KB + C^{T} = 0$$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Lossless systems

• System $\mathfrak{B} : \frac{d}{dt}x = Ax + Bu, \ y = Cx + Du$, (Minimal) $A \in \mathbb{R}^{n \times n}, \ C, B^T \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{p \times p}$.

Necessary condition for all pass: $D + D^T = 0$.

- Dissipation equation: $\frac{d}{dt}(x^TKx) = 2u^Ty$.
- Linear Matrix Equations (LME): Lossless if and only if there exists $K = K^T \in \mathbb{R}^{n \times n}$

$$\begin{bmatrix} A^T K + KA & KB - C^T \\ B^T K - C & 0 \end{bmatrix} = 0$$

• Rewriting the LME: Lossless if and only if there exists $K = K^T \in \mathbb{R}^{n \times n}$

$$A^T K + K A = 0$$
$$K B - C^T = 0$$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass and Lossless systems

	Lossless	Allpass
Supply rate Σ	$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$	$\begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$
Conservative	$d\left({_{x}T}K_{x} \right) = 2a_{x}T_{y}$	$d\left(x^{T}Kx\right) = u^{T}u - u^{T}u$
counterpart	$\left[\frac{dt}{dt} \begin{pmatrix} x & \Lambda x \end{pmatrix} - 2u & y \end{bmatrix}$	$\frac{d}{dt} \left(x \mathbf{M} x \right) = u u = g g$
Fyamplo	$G(s) = \frac{s}{s+1}$	$G(s) = \frac{s-1}{s+1}$
Example	(LC circuits)	(allows all frequency)
Poles of	On imaginary avis	Symmetric about real
the system	On magmary axis	and imaginary axis
K satisfies	$A^T K + K A = 0$	$A^T K + KA + C^T C = 0$
LME	$KB - C^T = 0$	$KB + C^T = 0$

Allpass and Lossless systems

	Lossless	Allpass
Supply rate Σ	$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$	$\begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$
Conservative counterpart	$\frac{d}{dt}\left(x^T K x\right) = 2u^T y$	$\frac{d}{dt}\left(x^T K x\right) = u^T u - y^T y$
Example	$G(s) = \frac{s}{s+1}$ (LC circuits)	$G(s) = \frac{s-1}{s+1}$ (allows all frequency)
Zeros and poles of the system	Interlace on $j\mathbb{R}$	Mirrored about $j\mathbb{R}$
K satisfies	$A^T K + K A = 0$	$A^T K + KA + C^T C = 0$
	$KB - C^T = 0$	$KB + C^{T} = 0$

Lossless: Lyapunov equation $A^T K + K A = 0$ has non-unique solutions.

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Theorem

• \mathfrak{B}_{all} is an allpass system and \mathfrak{B}_{ℓ} is its lossless counterpart.

	Lossless	Allpass
Minimal i/s/o	$\frac{d}{dt}x = Ax + Bu$	$\frac{d}{dt}x = \hat{A}x + \hat{B}\left(\frac{u+y}{\sqrt{2}}\right)$
representation	y = Cx + Du	$\frac{u-y}{\sqrt{2}} = \hat{C}x + \hat{D}\left(\frac{u+y}{\sqrt{2}}\right)$

$$\begin{split} \hat{A} &:= \left(A - B(I+D)^{-1}C \right), \, \hat{B} = \frac{1}{\sqrt{2}} \left(B + B(I+D)^{-1}(I-D) \right), \\ \hat{C} &= -\sqrt{2}(I+D)^{-1}C \text{ and } \hat{D} := (I+D)^{-1}(I-D). \end{split}$$

Theorem

• \mathfrak{B}_{all} is an allpass system and \mathfrak{B}_{ℓ} is its lossless counterpart.

Then, the storage function of \mathfrak{B}_{all} and \mathfrak{B}_{ℓ} is the same.

	Lossless	Allpass
Minimal i/s/o	$\frac{d}{dt}x = Ax + Bu$	$\frac{d}{dt}x = \hat{A}x + \hat{B}\left(\frac{u+y}{\sqrt{2}}\right)$
representation	y = Cx + Du	$\frac{u-y}{\sqrt{2}} = \hat{C}x + \hat{D}\left(\frac{u+y}{\sqrt{2}}\right)$

$$\hat{A} := \left(A - B(I+D)^{-1}C\right), \ \hat{B} = \frac{1}{\sqrt{2}}\left(B + B(I+D)^{-1}(I-D)\right),$$
$$\hat{C} = -\sqrt{2}(I+D)^{-1}C \text{ and } \hat{D} := (I+D)^{-1}(I-D).$$

True for positive-real and bounded-real systems.

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Theorem

• \mathfrak{B}_{all} is an allpass system and \mathfrak{B}_{ℓ} is its lossless counterpart.

Then, the storage function of \mathfrak{B}_{all} and \mathfrak{B}_{ℓ} is the same.

	Lossless	Allpass
Minimal i/s/o	$\frac{d}{dt}x = Ax + Bu$	$\frac{d}{dt}x = \hat{A}x + \hat{B}\left(\frac{u+y}{\sqrt{2}}\right)$
representation	y = Cx + Du	$\frac{u-y}{\sqrt{2}} = \hat{C}x + \hat{D}\left(\frac{u+y}{\sqrt{2}}\right)$

$$\begin{split} \hat{A} &:= \left(A - B(I+D)^{-1}C\right), \, \hat{B} = \frac{1}{\sqrt{2}} \left(B + B(I+D)^{-1}(I-D)\right), \\ \hat{C} &= -\sqrt{2}(I+D)^{-1}C \text{ and } \hat{D} := (I+D)^{-1}(I-D). \\ \text{True for positive-real and bounded-real systems.} \end{split}$$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Theorem

• Stable, minimal, allpass system

$$\frac{d}{dt}x = Ax + Bu \quad and \quad y = Cx + Du,$$

where $A \in \mathbb{R}^{n \times n}$, $B, C^T \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{p \times p}$.

• Assume Q to be the observability Gramian of the system.

Then, x^TQx is the unique storage function of the system.

Corollary

• Allpass system \mathfrak{B}_{all} and its lossless counterpart \mathfrak{B}_{ℓ} .

Then, observability Gramian of \mathfrak{B}_{all} is the storage function of \mathfrak{B}_{ℓ} .

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

Theorem

• Stable, minimal, allpass system

$$\frac{d}{dt}x = Ax + Bu \quad and \quad y = Cx + Du,$$

where $A \in \mathbb{R}^{n \times n}$, $B, C^T \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{p \times p}$.

• Assume Q to be the observability Gramian of the system.

Then, $x^T Q x$ is the unique storage function of the system.

Corollary

• Allpass system \mathfrak{B}_{all} and its lossless counterpart \mathfrak{B}_{ℓ} .

Then, observability Gramian of \mathfrak{B}_{all} is the storage function of \mathfrak{B}_{ℓ} .

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

Theorem

• Stable, minimal, allpass system

$$\frac{d}{dt}x = Ax + Bu \quad and \quad y = Cx + Du,$$

where $A \in \mathbb{R}^{n \times n}$, $B, C^T \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{p \times p}$.

• Assume Q to be the observability Gramian of the system.

Then, $x^T Q x$ is the unique storage function of the system.

Corollary

• Allpass system \mathfrak{B}_{all} and its lossless counterpart \mathfrak{B}_{ℓ} .

Then, observability Gramian of \mathfrak{B}_{all} is the storage function of \mathfrak{B}_{ℓ} .

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

Theorem

• Stable, minimal, allpass system

$$\frac{d}{dt}x = Ax + Bu \quad and \quad y = Cx + Du,$$

where $A \in \mathbb{R}^{n \times n}$, $B, C^T \in \mathbb{R}^{n \times p}$ and $D \in \mathbb{R}^{p \times p}$.

• Assume Q to be the observability Gramian of the system.

Then, $x^T Q x$ is the unique storage function of the system.

Corollary

• Allpass system \mathfrak{B}_{all} and its lossless counterpart \mathfrak{B}_{ℓ} .

Then, observability Gramian of \mathfrak{B}_{all} is the storage function of \mathfrak{B}_{ℓ} .

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Lossless system $G(s) = \frac{0.2s}{s^2 + 0.1}$. i/s/o representation:

$$\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & 0 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{5} \end{bmatrix} i,$$
$$v = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix}.$$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian EE Dept. IIT Bombay 10 / 18

Storage functions of lossless systems

Lossless system:
$$G(s) = \frac{0.2s}{s^2 + 0.1}$$
.
$$\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & 0 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{5} \end{bmatrix} u,$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix}.$$

Allpass counterpart: $G(s) = \frac{s^2 - 0.2s + 0.1}{s^2 + 0.2s + 0.1}$. i/s/o representation:

$$\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & -\frac{1}{5} \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{\sqrt{2}}{5} \end{bmatrix} \left(\frac{u+y}{\sqrt{2}} \right),$$
$$\left(\frac{u-y}{\sqrt{2}} \right) = \begin{bmatrix} 0 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + 1 \left(\frac{u+y}{\sqrt{2}} \right).$$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

Storage functions of lossless systems

Lossless system:
$$G(s) = \frac{0.2s}{s^2 + 0.1}$$
.
 $\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & 0 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{5} \end{bmatrix} u,$
 $y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix}.$

Allpass counterpart: $G(s) = \frac{s^2 - 0.2s + 0.1}{s^2 + 0.2s + 0.1}$. i/s/o representation:

$$\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & -\frac{1}{5} \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{\sqrt{2}}{5} \end{bmatrix} \left(\frac{u+y}{\sqrt{2}} \right),$$
$$\left(\frac{u-y}{\sqrt{2}} \right) = \begin{bmatrix} 0 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + 1 \left(\frac{u+y}{\sqrt{2}} \right).$$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

I

Lossless:
$$G(s) = \frac{0.2s}{s^2 + 0.1}$$
. Allpass: $G(s) = \frac{s^2 - 0.2s + 0.1}{s^2 + 0.2s + 0.1}$.
 $\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & 0 \end{bmatrix}}_{A} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{5} \end{bmatrix}}_{B}^{i_L} i_l$, $\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{5} & -\frac{1}{5} \end{bmatrix}}_{\hat{A}} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{\sqrt{2}}{5} \end{bmatrix}}_{\hat{B}} \begin{pmatrix} \frac{u+y}{\sqrt{2}} \end{pmatrix},$
 $v = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{C} \begin{bmatrix} i_L \\ v_C \end{bmatrix}$. $\begin{pmatrix} \frac{u-y}{\sqrt{2}} \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & -\sqrt{2} \\ v_C \end{bmatrix}}_{\hat{C}} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + 1 \begin{pmatrix} \frac{u+y}{\sqrt{2}} \end{pmatrix}.$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Lossless:
$$G(s) = \frac{0.2s}{s^2 + 0.1}$$
. Allpass: $G(s) = \frac{s^2 - 0.2s + 0.1}{s^2 + 0.2s + 0.1}$.
 $\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & 0 \end{bmatrix}}_{A} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{5} \end{bmatrix}}_{B}^{i_L} i_l$, $\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{5} & -\frac{1}{5} \end{bmatrix}}_{A} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{\sqrt{2}}{5} \end{bmatrix}}_{B} \left(\frac{u+y}{\sqrt{2}} \right),$
 $v = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{C} \begin{bmatrix} i_L \\ v_C \end{bmatrix}$. $\left(\frac{u-y}{\sqrt{2}} \right) = \underbrace{\begin{bmatrix} 0 & -\sqrt{2} \\ v_C \end{bmatrix}}_{C} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + 1 \left(\frac{u+y}{\sqrt{2}} \right).$

Observability Gramian matrix: $Q = \begin{vmatrix} 2 & 0 \\ 0 & 5 \end{vmatrix}$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Lossless:
$$G(s) = \frac{0.2s}{s^2 + 0.1}$$
. Allpass: $G(s) = \frac{s^2 - 0.2s + 0.1}{s^2 + 0.2s + 0.1}$.
 $\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & 0 \end{bmatrix}}_{A} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{5} \end{bmatrix}}_{B}^{i_L} i_l$, $\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{5} & -\frac{1}{5} \end{bmatrix}}_{A} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{\sqrt{2}}{5} \end{bmatrix}}_{B} \left(\frac{u+y}{\sqrt{2}} \right),$
 $v = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{C} \begin{bmatrix} i_L \\ v_C \end{bmatrix}$. $\left(\frac{u-y}{\sqrt{2}} \right) = \underbrace{\begin{bmatrix} 0 & -\sqrt{2} \\ v_C \end{bmatrix}}_{C} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + 1 \left(\frac{u+y}{\sqrt{2}} \right).$

Observability Gramian matrix: $Q = \begin{vmatrix} 2 & 0 \\ 0 & 5 \end{vmatrix}$ Stored energy $= 2i_L^2 + 5v_c^2$. (Recall: power = 2vi)

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Lossless:
$$G(s) = \frac{0.2s}{s^2 + 0.1}$$
. Allpass: $G(s) = \frac{s^2 - 0.2s + 0.1}{s^2 + 0.2s + 0.1}$.
 $\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & 0 \end{bmatrix}}_{A} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{5} \end{bmatrix}}_{B}^{i_L} i_l$, $\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{5} & -\frac{1}{5} \end{bmatrix}}_{A} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{\sqrt{2}}{5} \end{bmatrix}}_{B} \begin{pmatrix} \frac{u+y}{\sqrt{2}} \end{pmatrix},$
 $v = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{C} \begin{bmatrix} i_L \\ v_C \end{bmatrix}$. $\begin{pmatrix} \frac{u-y}{\sqrt{2}} \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & -\sqrt{2} \\ v_C \end{bmatrix}}_{C} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + 1 \begin{pmatrix} \frac{u+y}{\sqrt{2}} \end{pmatrix}.$

Observability Gramian matrix: $Q = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$ Stored energy $= 2i_L^2 + 5v_c^2$. (Recall: power = 2vi)

 $\begin{aligned} A^T Q + Q A &= 0 \\ Q B - C^T &= 0. \end{aligned} \qquad \qquad \hat{A}^T Q + Q \hat{A} + \hat{C}^T \hat{C} &= 0 \\ Q \hat{B} + \hat{C}^T &= 0. \end{aligned}$

 $x^T Q x$ is the storage function of both the systems.

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Definition

System representation is said to be in balanced state space basis if controllability Gramian P = observability Gramian Q.

Theorem

• Stable, allpass system: $\frac{d}{dt}x = Ax + Bu$, y = Cx + Du in a balanced state space basis.

Then, Storage function K = I.

= All pass systems² have PQ = I. = Balanced transformations P = Q. Then $Q^2 = I$.

Q = Q = Q = Q

Definition

System representation is said to be in balanced state space basis if controllability Gramian P = observability Gramian Q.

Theorem

• Stable, allpass system: $\frac{d}{dt}x = Ax + Bu$, y = Cx + Du in a balanced state space basis.

Then, Storage function K = I.

All pass systems? have PQ = I. Balanced transformation: P = Q. Then $Q^2 = I$

• System is stable: $Q > 0 \implies Q = I$

Definition

System representation is said to be in balanced state space basis if controllability Gramian P = observability Gramian Q.

Theorem

• Stable, allpass system: $\frac{d}{dt}x = Ax + Bu$, y = Cx + Du in a balanced state space basis.

Then, Storage function K = I.

• Allpass systems² have PQ = I. • Balanced transformation: P = Q. Then $Q^2 =$

Definition

System representation is said to be in balanced state space basis if controllability Gramian P = observability Gramian Q.

Theorem

• Stable, allpass system: $\frac{d}{dt}x = Ax + Bu$, y = Cx + Du in a balanced state space basis.

Then, Storage function K = I.

• Allpass systems² have PQ = I. • Balanced transformation: P = Q. Then $Q^2 = I$

System is stable: $Q > 0 \implies Q = L$.

Definition

System representation is said to be in balanced state space basis if controllability Gramian P = observability Gramian Q.

Theorem

• Stable, allpass system: $\frac{d}{dt}x = Ax + Bu$, y = Cx + Du in a balanced state space basis.

Then, Storage function K = I.

- Allpass systems² have PQ = I.
- Balanced transformation: P = Q. Then $Q^2 = I$.
- System is stable: $Q > 0 \implies Q = I$.

²K. Glover, IJC, 1984

Definition

System representation is said to be in balanced state space basis if controllability Gramian P = observability Gramian Q.

Theorem

• Stable, allpass system: $\frac{d}{dt}x = Ax + Bu$, y = Cx + Du in a balanced state space basis.

Then, Storage function K = I.

- Allpass systems² have PQ = I.
- Balanced transformation: P = Q. Then $Q^2 = I$.
- System is stable: $Q > 0 \implies Q = I$.

²K. Glover, IJC, 1984

Definition

System representation is said to be in balanced state space basis if controllability Gramian P = observability Gramian Q.

Theorem

• Stable, allpass system: $\frac{d}{dt}x = Ax + Bu$, y = Cx + Du in a balanced state space basis.

Then, Storage function K = I.

- Allpass systems² have PQ = I.
- Balanced transformation: P = Q. Then $Q^2 = I$.
- System is stable: $Q > 0 \implies Q = I$.

²K. Glover, IJC, 1984

System \mathfrak{B} :: states x

Minimal i/s/o representation

Adjoint system $\mathfrak{B}^{\perp_{\Sigma}}$:: co-states λ

Minimal i/s/o representation

 $\dot{x} = Ax + Bu$ u = Cx + Du

 $\dot{\lambda} = -A^T \lambda + C^T f$ $e = B^T \lambda - D^T f$

Interconnect: u to f and y to $e \implies \mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ formed. First order representation of $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$:

$$\begin{pmatrix} \frac{d}{dt} \begin{bmatrix} I_n & 0 & 0\\ 0 & I_n & 0\\ 0 & 0 & 0 \end{bmatrix} - \underbrace{\begin{bmatrix} A & 0 & B\\ 0 & -A^T & C^T\\ C & -B^T & D + D^T \end{bmatrix}}_{H} \begin{pmatrix} x\\ \lambda\\ u \end{bmatrix} = 0$$

Hamiltonian pencil $R(\xi)$

Adjoint system

Positive-real system and its adjoint

System \mathfrak{B} :: states x

Minimal i/s/o representation

Aujoint system \mathfrak{D}^{-2} :: co-states

Minimal i/s/o representation

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

 $\dot{\lambda} = -A^T \lambda + C^T f$ $e = B^T \lambda - D^T f$

Interconnect: u to f and y to $e \implies \mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ formed. First order representation of $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$:

$$\begin{pmatrix} \frac{d}{dt} \begin{bmatrix} I_n & 0 & 0\\ 0 & I_n & 0\\ 0 & 0 & 0 \end{bmatrix} - \underbrace{\begin{bmatrix} A & 0 & B\\ 0 & -A^T & C^T\\ C & -B^T & D + D^T \end{bmatrix}}_{H} \begin{bmatrix} x\\ \lambda\\ u \end{bmatrix} = 0$$

Hamiltonian pencil $R(\xi)$

System \mathfrak{B} :: states x

Minimal i/s/o representation

Adjoint system $\mathfrak{B}^{\perp_{\Sigma}}$:: co-states λ

Minimal i/s/o representation

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

 $\dot{\lambda} = -A^T \lambda + C^T f$ $e = B^T \lambda - D^T f$

Interconnect: u to f and y to $e \implies \mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ formed. First order representation of $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$:

$$\left(\frac{d}{dt}\underbrace{\begin{bmatrix}I_n & 0 & 0\\ 0 & I_n & 0\\ 0 & 0 & 0\end{bmatrix}}_{E} - \underbrace{\begin{bmatrix}A & 0 & B\\ 0 & -A^T & C^T\\ C & -B^T & D + D^T\end{bmatrix}}_{H}\right)\begin{bmatrix}x\\ \lambda\\ u\end{bmatrix} = 0$$

Hamiltonian pencil $R(\xi)$

System \mathfrak{B} :: states x

Minimal i/s/o representation

Adjoint system $\mathfrak{B}^{\perp_{\Sigma}}$:: co-states λ

Minimal i/s/o representation

$$\dot{x} = Ax + Bu \qquad \qquad \dot{\lambda} = -A^T \lambda + C^T f$$
$$y = Cx + Du \qquad \qquad e = B^T \lambda - D^T f$$

Interconnect: u to f and y to $e \implies \mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ formed.

First order representation of $\mathfrak{B} \cap \mathfrak{B}^{\perp \Sigma}$:

$$\left(\frac{d}{dt}\underbrace{\begin{bmatrix} I_n & 0 & 0\\ 0 & I_n & 0\\ 0 & 0 & 0\end{bmatrix}}_{E} - \underbrace{\begin{bmatrix} A & 0 & B\\ 0 & -A^T & C^T\\ C & -B^T & D + D^T \end{bmatrix}}_{H}\right)\begin{bmatrix} x\\ \lambda\\ u \end{bmatrix} = 0$$

Hamiltonian pencil $R(\xi)$

System \mathfrak{B} :: states x

Minimal i/s/o representation

Adjoint system $\mathfrak{B}^{\perp_{\Sigma}}$:: co-states λ

Minimal i/s/o representation

$$\dot{x} = Ax + Bu \qquad \qquad \dot{\lambda} = -A^T \lambda + C^T f$$
$$y = Cx + Du \qquad \qquad e = B^T \lambda - D^T f$$

Interconnect: u to f and y to $e \implies \mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ formed. First order representation of $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$:

$$\underbrace{\begin{pmatrix} \frac{d}{dt} \begin{bmatrix} I_n & 0 & 0\\ 0 & I_n & 0\\ 0 & 0 & 0 \end{bmatrix}}_{E} - \underbrace{\begin{bmatrix} A & 0 & B\\ 0 & -A^T & C^T\\ C & -B^T & D + D^T \end{bmatrix}}_{H} \begin{pmatrix} x\\ \lambda\\ u \end{bmatrix} = 0$$
Hamiltonian pencil $B(\xi)$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Lossless system and its adjoint

Adjoint system $\mathfrak{B}^{\perp_{\Sigma}}$:: co-states z System \mathfrak{B} :: states x Minimal i/s/o representation Minimal i/s/o representation $\dot{\lambda} = -A^T \lambda + C^T f$ $\dot{x} = Ax + Bu$ $e = B^T \lambda - D^T f$ y = Cx + DuInterconnect: u to f and y to $e \implies \mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ formed. First order representation of $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$: $\left(\begin{array}{ccc} \frac{d}{dt} \begin{bmatrix} I_n & 0 & 0\\ 0 & I_n & 0\\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} A & 0 & B\\ 0 & -A^T & C^T\\ C & -B^T & 0 \end{bmatrix} \right) \begin{bmatrix} x\\ \lambda\\ u \end{bmatrix} = 0 \text{ and } \det(sE-H) = 0.$ HHamiltonian pencil $R(\xi)$

• Lossless system $\mathfrak{B} \colon (A,B,C,\textbf{\textit{D}})$ minimal realization.

•
$$\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$$
: $\left(E\frac{d}{dt} - H\right) \begin{vmatrix} \lambda \\ \lambda \end{vmatrix} = 0 \text{ and } y = Cx + Du.$

• Q: observability Gramian of allpass counterpart of \mathfrak{B} .

Then, there exists a unique $K = K^T \in \mathbb{R}^{n \times n}$ such that

$$\frac{d}{dt}x^T K x = 2u^T y \qquad \text{for all } \begin{bmatrix} u \\ y \end{bmatrix} \in \mathfrak{B}.$$

$$\left[-\frac{R(0)}{2} \right] = \operatorname{conk} R(0) = \left[-\frac{R(0)}{2} \right]$$

• Lossless system \mathfrak{B} : (A, B, C, D) minimal realization.

•
$$\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$$
: $\left(E\frac{d}{dt} - H\right) \begin{vmatrix} x \\ \lambda \\ u \end{vmatrix} = 0 \text{ and } y = Cx + Du.$

• Q: observability Gramian of allpass counterpart of \mathfrak{B} .

Then, there exists a unique $K = K^T \in \mathbb{R}^{n \times n}$ such that

$$rac{d}{dt}x^TKx = 2u^Ty$$
 for all $\begin{bmatrix} u\\y \end{bmatrix} \in \mathfrak{B}.$

if and only if

 $= (2) \mathcal{R} \operatorname{starr} = \left[\begin{array}{c} -(2) \mathcal{R} \\ 0 & 1 \end{array} \right] \operatorname{starr}$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

• Lossless system \mathfrak{B} : (A, B, C, D) minimal realization.

•
$$\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$$
: $\left(E\frac{d}{dt} - H\right) \begin{vmatrix} x \\ \lambda \\ u \end{vmatrix} = 0 \text{ and } y = Cx + Du.$

• Q: observability Gramian of allpass counterpart of \mathfrak{B} .

Then, there exists a unique $K = K^T \in \mathbb{R}^{n \times n}$ such that

$$\frac{d}{dt}x^T K x = 2u^T y$$
 for all $\begin{bmatrix} u \\ y \end{bmatrix} \in \mathfrak{B}.$

if and only if

 $= (2) \mathcal{R} \operatorname{shart} = \left[\begin{array}{c} (2) \mathcal{R} \\ g \end{array} \right] \operatorname{shart} = \left[\begin{array}{c} (2) \mathcal{R} \\ g \end{array} \right] \operatorname{shart} = \left[\begin{array}{c} (2) \mathcal{R} \\ g \end{array} \right]$

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

Static relations: states and costates

• Lossless system \mathfrak{B} : (A, B, C, D) minimal realization.

•
$$\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$$
: $\left(E\frac{d}{dt} - H\right) \begin{vmatrix} x \\ \lambda \\ u \end{vmatrix} = 0 \text{ and } y = Cx + Du.$

• Q: observability Gramian of allpass counterpart of \mathfrak{B} .

Then, there exists a unique $K = K^T \in \mathbb{R}^{n \times n}$ such that

$$\frac{d}{dt}x^T K x = 2u^T y \qquad \text{for all } \begin{bmatrix} u \\ y \end{bmatrix} \in \mathfrak{B}.$$

if and only if

rank
$$\begin{bmatrix} R(\xi) \\ -K & I & 0 \end{bmatrix}$$
 = rank $R(\xi)$.

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

Static relations: states and costates

• Lossless system \mathfrak{B} : (A, B, C, D) minimal realization.

•
$$\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$$
: $\left(E\frac{d}{dt} - H\right) \begin{vmatrix} x \\ \lambda \\ u \end{vmatrix} = 0 \text{ and } y = Cx + Du.$

• Q: observability Gramian of allpass counterpart of \mathfrak{B} .

Then, there exists a unique $K = K^T \in \mathbb{R}^{n \times n}$ such that

$$\frac{d}{dt}x^T K x = 2u^T y \qquad \text{for all } \begin{bmatrix} u \\ y \end{bmatrix} \in \mathfrak{B}.$$

if and only if

rank
$$\begin{bmatrix} R(\xi) \\ -K & I & 0 \end{bmatrix}$$
 = rank $R(\xi)$.

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Allpass systems and Gramian

Static relations: states and costates

• Lossless system \mathfrak{B} : (A, B, C, D) minimal realization.

•
$$\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$$
: $\left(E\frac{d}{dt} - H\right) \begin{vmatrix} x \\ \lambda \\ u \end{vmatrix} = 0 \text{ and } y = Cx + Du.$

• Q: observability Gramian of allpass counterpart of \mathfrak{B} .

Then, there exists a unique $K = K^T \in \mathbb{R}^{n \times n}$ such that

$$\frac{d}{dt}x^TKx = 2u^Ty$$
 for all $\begin{bmatrix} u\\ y \end{bmatrix} \in \mathfrak{B}.$

if and only if

rank
$$\begin{bmatrix} R(\xi) \\ -K & I & 0 \end{bmatrix}$$
 = rank $R(\xi)$.

C.Bhawal, D.Pal, M.Belur (CC Grp.)

• For lossless systems:

$$\begin{bmatrix} \xi I - A & 0 & -B \\ 0 & \xi I + A^T & -C^T \\ -C & B^T & 0 \\ \hline -K & I & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \\ y \end{bmatrix} = 0$$

• Static realtions between states x and co-states λ :

$$\lambda = Kx$$

• For lossless systems:

$$\begin{bmatrix} \xi I - A & 0 & -B \\ 0 & \xi I + A^T & -C^T \\ -C & B^T & 0 \\ \hline -Q & I & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \\ y \end{bmatrix} = 0$$

• Static realtions between states x and co-states λ :

$$\lambda = Qx$$

• States and co-states are related by observability Gramian.

Static relations: example

• Lossless behavior \mathfrak{B} with transfer function $G(s) = \frac{0.2s}{s^2+0.1}$.

$$\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & 0 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{5} \end{bmatrix} i \quad \text{and} \quad v = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + 0i$$

Hamiltonian pencil:

$$R(\xi) = \begin{bmatrix} \xi & -\frac{1}{2} & 0 & 0 & 0\\ \frac{1}{5} & \xi & 0 & 0 & -\frac{1}{5}\\ 0 & 0 & \xi & -\frac{1}{5} & 0\\ 0 & 0 & \frac{1}{2} & \xi & -1\\ 0 & -1 & 0 & \frac{1}{5} & 0 \end{bmatrix}$$

Example revisited

Static relations: example

• Lossless behavior \mathfrak{B} with transfer function $G(s) = \frac{0.2s}{s^2+0.1}$.

$$\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & 0 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{5} \end{bmatrix} i \quad \text{and} \quad v = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + 0i$$

Hamiltonian pencil:

 $R(\xi) = \begin{bmatrix} \xi & -\frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{5} & \xi & 0 & 0 & -\frac{1}{5} \\ 0 & 0 & \xi & -\frac{1}{5} & 0 \\ 0 & 0 & \frac{1}{2} & \xi & -1 \\ 0 & -1 & 0 & \frac{1}{5} & 0 \\ \hline -2 & 0 & 1 & 0 & 0 \\ 0 & -5 & 0 & 1 & 0 \end{bmatrix} . \qquad \begin{matrix} i \\ v \\ - \\ \hline \begin{matrix} \\ - \\ \hline \end{matrix}$

Static relations: example

• Lossless behavior \mathfrak{B} with transfer function $G(s) = \frac{0.2s}{s^2+0.1}$.

$$\frac{d}{dt} \begin{bmatrix} i_L \\ v_C \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{5} & 0 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{5} \end{bmatrix} i \quad \text{and} \quad v = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i_L \\ v_C \end{bmatrix} + 0i$$

$$\begin{bmatrix} -1 & 5(\xi-2) & 0.5 & (2-\xi) & 5\xi^2 - 10\xi + 0.5 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} \xi & -\frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{5} & \xi & 0 & 0 & -\frac{1}{5} \\ 0 & 0 & \xi & -\frac{1}{5} & 0 \\ 0 & 0 & \frac{1}{2} & \xi & -1 \\ 0 & -1 & 0 & \frac{1}{5} & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -2 & 0 & 1 & 0 & 0 \\ 0 & -5 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -Q & I & 0 \end{bmatrix}$$

- One-to-one correspondence between lossless and allpass system: The storage function remains same.
- Observability Gramian is the storage function for allpass/lossless systems.
- **(1)** Easy computation of storage functions of lossless systems.
- In balanced basis, storage function is induced by identity matrix.
- Static relations between states and its corresponding costates induced by storage function.

- One-to-one correspondence between lossless and allpass system: The storage function remains same.
- Observability Gramian is the storage function for allpass/lossless systems.
- Easy computation of storage functions of lossless systems.
- **(1)** In balanced basis, storage function is induced by identity matrix.
- Static relations between states and its corresponding costates induced by storage function.

- One-to-one correspondence between lossless and allpass system: The storage function remains same.
- Observability Gramian is the storage function for allpass/lossless systems.
- Easy computation of storage functions of lossless systems.
- **(1)** In balanced basis, storage function is induced by identity matrix.
- Static relations between states and its corresponding costates induced by storage function.

- One-to-one correspondence between lossless and allpass system: The storage function remains same.
- Observability Gramian is the storage function for allpass/lossless systems.
- **③** Easy computation of storage functions of lossless systems.
- **1** In balanced basis, storage function is induced by identity matrix.
- Static relations between states and its corresponding costates induced by storage function.

- One-to-one correspondence between lossless and allpass system: The storage function remains same.
- Observability Gramian is the storage function for allpass/lossless systems.
- **③** Easy computation of storage functions of lossless systems.
- **(1)** In balanced basis, storage function is induced by identity matrix.
- Static relations between states and its corresponding costates induced by storage function.

Thank You Questions?

C.Bhawal, D.Pal, M.Belur (CC Grp.)

Constant Constant

Allpass systems and Gramian

EE Dept. IIT Bombay