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Storage functions of allpass/lossless systems Dissipative systems and storage function

Dissipative systems and storage function

A dissipative system

1 has no source of
energy.

2 can only absorb
energy.

3 can store
energy.

Rate-change-stored-energy︸ ︷︷ ︸
d
dt
QΨ(w)

+ Dissipated power︸ ︷︷ ︸
Q∆(w)

= Power supplied︸ ︷︷ ︸
QΣ(w)

Dissipative systems : d
dtQΨ(w) 6 QΣ(w).

Power supplied with respect to system variable: QΣ(w)=wTΣw.

e.g. Supply rate: w = (u, y) : QΣ(w) = wT
[
0 I
I 0

]
w = 2uT y.

Stored energy: Storage function1 QΨ(w) = xTKx.
1
Trentelman and Willems, SCL, Every storage function is a state function, 1997.
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Storage functions of allpass/lossless systems Dissipative systems and storage function

Passivity and bounded-real systems

Dissipative systems

d

dt

(
xTKx

)
6 QΣ(w), where w = (u, y).

Positive-real Bounded-real

Supply rate Σ

[
0 I
I 0

] [
I 0
0 −I

]
Dissipation
inequality

d
dt

(
xTKx

)
6 2uT y d

dt

(
xTKx

)
6 uTu− yT y

Conservative
counterpart

d
dt

(
xTKx

)
= 2uT y d

dt

(
xTKx

)
= uTu− yT y

Name Lossless Allpass

Example
G(s) = s

s2+1

(LC circuits)

G(s) = s−1
s+1

(allows all frequencies to pass)
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Storage functions of allpass/lossless systems Allpass systems

Allpass systems

System B : d
dtx = Ax+Bu, y = Cx+Du, (Minimal)

A ∈ Rn×n, C,BT ∈ Rn×p and D ∈ Rp×p.

Necessary condition for allpass: I −DTD = 0.

Dissipation equation: d
dt

(
xTKx

)
= uTu− yT y.

Linear Matrix Equations (LME):
Allpass if and only if there exists K = KT ∈ Rn×n[

ATK +KA+ CTC KB + CT

BTK + C 0

]
= 0

Rewriting the LME:
Allpass if and only if there exists K = KT ∈ Rn×n

ATK +KA+ CTC = 0

KB + CT = 0
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Storage functions of allpass/lossless systems Lossless systems

Lossless systems

System B : d
dtx = Ax+Bu, y = Cx+Du, (Minimal)

A ∈ Rn×n, C,BT ∈ Rn×p and D ∈ Rp×p.

Necessary condition for allpass: D +DT = 0.

Dissipation equation: d
dt

(
xTKx

)
= 2uT y.

Linear Matrix Equations (LME):
Lossless if and only if there exists K = KT ∈ Rn×n[

ATK +KA KB − CT
BTK − C 0

]
= 0

Rewriting the LME:
Lossless if and only if there exists K = KT ∈ Rn×n

ATK +KA= 0

KB − CT= 0
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Storage functions of allpass/lossless systems Allpass and Lossless systems

Allpass and Lossless systems

Lossless Allpass

Supply rate Σ

[
0 I
I 0

] [
I 0
0 −I

]
Conservative
counterpart

d
dt

(
xTKx

)
= 2uT y d

dt

(
xTKx

)
= uTu− yT y

Example
G(s) = s

s+1

(LC circuits)

G(s) = s−1
s+1

(allows all frequency)
Poles of

the system
On imaginary axis

Symmetric about real
and imaginary axis

K satisfies
LME

ATK +KA = 0
KB − CT = 0

ATK +KA+ CTC = 0
KB + CT = 0

Lossless: Lyapunov equation ATK +KA = 0 has non-unique solutions.
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(
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Example
G(s) = s

s+1

(LC circuits)
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(allows all frequency)
Zeros and poles of

the system
Interlace on jR Mirrored about jR

K satisfies
LME
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Storage functions of allpass/lossless systems Allpass systems and lossless counterpart

Link between storage functions of lossless systems and
allpass systems

Theorem

Ball is an allpass system and B` is its lossless counterpart.

Then, the storage function of Ball and B` is the same.

Lossless Allpass

Minimal i/s/o
representation

d
dtx = Ax+Bu
y = Cx+Du

d
dtx = Âx+ B̂

(
u+y√

2

)
u−y√

2
= Ĉx+ D̂

(
u+y√

2

)
Â :=

(
A−B(I +D)−1C

)
, B̂ = 1√

2

(
B +B(I +D)−1(I −D)

)
,

Ĉ = −
√

2(I +D)−1C and D̂ := (I +D)−1(I −D).
True for positive-real and bounded-real systems.
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Storage functions of allpass/lossless systems Allpass systems and observability Gramian

Allpass systems and Observability Gramian

Theorem

Stable, minimal, allpass system

d

dt
x = Ax+Bu and y = Cx+Du,

where A ∈ Rn×n, B,CT ∈ Rn×p and D ∈ Rp×p.

Assume Q to be the observability Gramian of the system.

Then, xTQx is the unique storage function of the system.

Corollary

Allpass system Ball and its lossless counterpart B`.

Then, observability Gramian of Ball is the storage function of B`.
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Storage functions of allpass/lossless systems Example

Link between storage functions of lossless systems and
allpass systems

Lossless system G(s) =
0.2s

s2 + 0.1
.

i/s/o representation:

d

dt

[
iL
vC

]
=

[
0 1

2
−1

5 0

] [
iL
vC

]
+

[
0
1
5

]
i,

v =
[
0 1

] [ iL
vC

]
.

-

iL

-

i
vC

5F

2H

+

+
v
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Storage functions of allpass/lossless systems Example

Storage functions of lossless systems

Lossless system: G(s) =
0.2s

s2 + 0.1
.

d

dt

[
iL
vC

]
=

[
0 1

2
−1

5 0

] [
iL
vC

]
+

[
0
1
5

]
u,

y =
[
0 1

] [ iL
vC

]
.

Allpass counterpart: G(s) =
s2 − 0.2s+ 0.1

s2 + 0.2s+ 0.1
.

i/s/o representation:

d

dt

[
iL
vC

]
=

[
0 1

2
−1

5 −1
5

] [
iL
vC

]
+

[
0√
2

5

](
u+ y√

2

)
,(

u− y√
2

)
=
[
0 −

√
2
] [ iL
vC

]
+1

(
u+ y√

2

)
.
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Storage functions of allpass/lossless systems Example

Storage functions of allpass and lossless systems

Lossless: G(s) =
0.2s

s2 + 0.1
.

d

dt

[
iL
vC

]
=

[
0 1

2
− 1

5
0

]
︸ ︷︷ ︸

A

[
iL
vC

]
+

[
0
1
5

]
︸︷︷︸
B

i,

v =
[
0 1

]︸ ︷︷ ︸
C

[
iL
vC

]
.

Allpass: G(s) =
s2 − 0.2s+ 0.1

s2 + 0.2s+ 0.1
.

d

dt

[
iL
vC

]
=

[
0 1

2
− 1

5
− 1

5

]
︸ ︷︷ ︸

Â

[
iL
vC

]
+

[
0√
2

5

]
︸ ︷︷ ︸

B̂

(
u + y
√

2

)
,

(
u− y
√

2

)
=
[
0 −

√
2
]︸ ︷︷ ︸

Ĉ

[
iL
vC

]
+ 1

(
u + y
√

2

)
.

Observability Gramian matrix: Q =

[
2 0
0 5

]
Stored energy = 2i2L + 5v2

c . (Recall: power = 2vi)

ATQ+QA = 0

QB − CT = 0.

ÂTQ+QÂ+ ĈT Ĉ= 0

QB̂ + ĈT= 0.

xTQx is the storage function of both the systems.
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Storage functions of allpass/lossless systems Storage function in balanced realization

Allpass systems and Balanced realization

Definition

System representation is said to be in balanced state space basis if
controllability Gramian P = observability Gramian Q.

Theorem

Stable, allpass system: d
dtx = Ax+Bu, y = Cx+Du in a balanced

state space basis.

Then, Storage function K = I.

Allpass systems2 have PQ = I.

Balanced transformation: P = Q. Then Q2 = I.

System is stable: Q > 0 =⇒ Q = I.

2K. Glover, IJC, 1984
C.Bhawal, D.Pal, M.Belur (CC Grp.) (Control and Computing Group (CC Group)Department of Electrical EngineeringIndian Institute of Technology Bombay)Allpass systems and Gramian EE Dept. IIT Bombay 13 / 18



Storage functions of allpass/lossless systems Storage function in balanced realization

Allpass systems and Balanced realization

Definition

System representation is said to be in balanced state space basis if
controllability Gramian P = observability Gramian Q.

Theorem

Stable, allpass system: d
dtx = Ax+Bu, y = Cx+Du in a balanced

state space basis.

Then, Storage function K = I.

Allpass systems2 have PQ = I.

Balanced transformation: P = Q. Then Q2 = I.

System is stable: Q > 0 =⇒ Q = I.

2K. Glover, IJC, 1984
C.Bhawal, D.Pal, M.Belur (CC Grp.) (Control and Computing Group (CC Group)Department of Electrical EngineeringIndian Institute of Technology Bombay)Allpass systems and Gramian EE Dept. IIT Bombay 13 / 18



Storage functions of allpass/lossless systems Storage function in balanced realization

Allpass systems and Balanced realization

Definition

System representation is said to be in balanced state space basis if
controllability Gramian P = observability Gramian Q.

Theorem

Stable, allpass system: d
dtx = Ax+Bu, y = Cx+Du in a balanced

state space basis.

Then, Storage function K = I.

Allpass systems2 have PQ = I.

Balanced transformation: P = Q. Then Q2 = I.

System is stable: Q > 0 =⇒ Q = I.

2K. Glover, IJC, 1984
C.Bhawal, D.Pal, M.Belur (CC Grp.) (Control and Computing Group (CC Group)Department of Electrical EngineeringIndian Institute of Technology Bombay)Allpass systems and Gramian EE Dept. IIT Bombay 13 / 18



Storage functions of allpass/lossless systems Storage function in balanced realization

Allpass systems and Balanced realization

Definition

System representation is said to be in balanced state space basis if
controllability Gramian P = observability Gramian Q.

Theorem

Stable, allpass system: d
dtx = Ax+Bu, y = Cx+Du in a balanced

state space basis.

Then, Storage function K = I.

Allpass systems2 have PQ = I.

Balanced transformation: P = Q. Then Q2 = I.

System is stable: Q > 0 =⇒ Q = I.

2K. Glover, IJC, 1984
C.Bhawal, D.Pal, M.Belur (CC Grp.) (Control and Computing Group (CC Group)Department of Electrical EngineeringIndian Institute of Technology Bombay)Allpass systems and Gramian EE Dept. IIT Bombay 13 / 18



Storage functions of allpass/lossless systems Storage function in balanced realization

Allpass systems and Balanced realization

Definition

System representation is said to be in balanced state space basis if
controllability Gramian P = observability Gramian Q.

Theorem

Stable, allpass system: d
dtx = Ax+Bu, y = Cx+Du in a balanced

state space basis.

Then, Storage function K = I.

Allpass systems2 have PQ = I.

Balanced transformation: P = Q. Then Q2 = I.

System is stable: Q > 0 =⇒ Q = I.

2K. Glover, IJC, 1984
C.Bhawal, D.Pal, M.Belur (CC Grp.) (Control and Computing Group (CC Group)Department of Electrical EngineeringIndian Institute of Technology Bombay)Allpass systems and Gramian EE Dept. IIT Bombay 13 / 18



Storage functions of allpass/lossless systems Storage function in balanced realization

Allpass systems and Balanced realization

Definition

System representation is said to be in balanced state space basis if
controllability Gramian P = observability Gramian Q.

Theorem

Stable, allpass system: d
dtx = Ax+Bu, y = Cx+Du in a balanced

state space basis.

Then, Storage function K = I.

Allpass systems2 have PQ = I.

Balanced transformation: P = Q. Then Q2 = I.

System is stable: Q > 0 =⇒ Q = I.

2K. Glover, IJC, 1984
C.Bhawal, D.Pal, M.Belur (CC Grp.) (Control and Computing Group (CC Group)Department of Electrical EngineeringIndian Institute of Technology Bombay)Allpass systems and Gramian EE Dept. IIT Bombay 13 / 18



Storage functions of allpass/lossless systems Storage function in balanced realization

Allpass systems and Balanced realization

Definition

System representation is said to be in balanced state space basis if
controllability Gramian P = observability Gramian Q.

Theorem

Stable, allpass system: d
dtx = Ax+Bu, y = Cx+Du in a balanced

state space basis.

Then, Storage function K = I.

Allpass systems2 have PQ = I.

Balanced transformation: P = Q. Then Q2 = I.

System is stable: Q > 0 =⇒ Q = I.

2K. Glover, IJC, 1984
C.Bhawal, D.Pal, M.Belur (CC Grp.) (Control and Computing Group (CC Group)Department of Electrical EngineeringIndian Institute of Technology Bombay)Allpass systems and Gramian EE Dept. IIT Bombay 13 / 18



Storage functions of allpass/lossless systems Adjoint system

Positive-real system and its adjoint

System B :: states x

Minimal i/s/o representation

ẋ = Ax+Bu

y = Cx+Du

Adjoint system B⊥Σ :: co-states λ

Minimal i/s/o representation

λ̇ = −ATλ+ CT f

e = BTλ−DT f

Interconnect: u to f and y to e =⇒ B ∩B⊥Σ formed.
First order representation of B ∩B⊥Σ :
d

dt

In 0 0
0 In 0
0 0 0


︸ ︷︷ ︸

E

−

A 0 B
0 −AT CT

C −BT D +DT


︸ ︷︷ ︸

H


︸ ︷︷ ︸

Hamiltonian pencil R(ξ)

xλ
u

 = 0
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Storage functions of allpass/lossless systems Adjoint system

Lossless system and its adjoint

System B :: states x

Minimal i/s/o representation

ẋ = Ax+Bu

y = Cx+Du

Adjoint system B⊥Σ :: co-states z

Minimal i/s/o representation

λ̇ = −ATλ+ CT f

e = BTλ−DT f

Interconnect: u to f and y to e =⇒ B ∩B⊥Σ formed.
First order representation of B ∩B⊥Σ :
d

dt

In 0 0
0 In 0
0 0 0


︸ ︷︷ ︸

E

−

A 0 B
0 −AT CT

C −BT 0


︸ ︷︷ ︸

H


︸ ︷︷ ︸

Hamiltonian pencil R(ξ)

xλ
u

 = 0 and det(sE−H) = 0.
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Storage functions of allpass/lossless systems Static relations states and costates

Static relations: states and costates

Lossless system B: (A,B,C,D) minimal realization.

B ∩B⊥Σ :
(
E d
dt −H

)xλ
u

 = 0 and y = Cx+Du.

Q: observability Gramian of allpass counterpart of B.

Then, there exists a unique K = KT ∈ Rn×n such that

d

dt
xTKx = 2uT y for all

[
u
y

]
∈ B.

if and only if

rank

[
R(ξ)

−K I 0

]
= rank R(ξ).
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Storage functions of allpass/lossless systems Static relations states and costates

Static relations: states and costates

For lossless systems:
ξI −A 0 −B

0 ξI +AT −CT
−C BT 0

−K I 0


xλ
y

 = 0

Static realtions between states x and co-states λ:

λ = Kx

States and co-states are related by observability Gramian.
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Static realtions between states x and co-states λ:
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Storage functions of allpass/lossless systems Example revisited

Static relations: example

Lossless behavior B with transfer function G(s) = 0.2s
s2+0.1

.

d

dt

[
iL
vC

]
=

[
0 1

2
−1

5 0

] [
iL
vC

]
+

[
0
1
5

]
i and v =

[
0 1

] [ iL
vC

]
+0 i

Hamiltonian pencil:

R(ξ) =


ξ − 1

2
0 0 0

1
5

ξ 0 0 − 1
5

0 0 ξ − 1
5

0
0 0 1

2
ξ −1

0 −1 0 1
5

0

 .

-

iL

-

i
vC

5F

2H

+

+
v
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ξ − 1
2

0 0 0
1
5

ξ 0 0 − 1
5

0 0 ξ − 1
5

0
0 0 1

2
ξ −1

0 −1 0 1
5

0

−2 0 1 0 0
0 −5 0 1 0


.

-

iL

-

i
vC

5F

2H

+

+
v
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.

d

dt
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]
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[
0 1

2
−1

5 0

] [
iL
vC

]
+

[
0
1
5

]
i and v =

[
0 1

] [ iL
vC

]
+0 i

[
−1 5(ξ − 2) 0.5 (2− ξ) 5ξ2 − 10ξ + 0.5
0 0 0 0 5

]
ξ − 1

2
0 0 0

1
5

ξ 0 0 − 1
5

0 0 ξ − 1
5

0
0 0 1

2
ξ −1

0 −1 0 1
5

0


=

[
−2 0 1 0 0
0 −5 0 1 0

]
=
[
−Q I 0

]
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Conclusion

Conclusion

1 One-to-one correspondence between lossless and allpass system:
The storage function remains same.

2 Observability Gramian is the storage function for allpass/lossless
systems.

3 Easy computation of storage functions of lossless systems.

4 In balanced basis, storage function is induced by identity matrix.

5 Static relations between states and its corresponding costates
induced by storage function.
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Questions?
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