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Abstract— In this paper, we show that singular LQR
problems with zero input-cost cannot be solved using static
state-feedback controllers. To this end we first show that
for such problems the corresponding constrained generalized
continuous algebraic Riccati equation (CGCARE) is not
solvable. This is achieved by establishing that the Hamiltonian
system in such a case does not admit a transfer function
which is identically zero. Further, we also show that, unlike
the multi-input case which admits both autonomous and
non-autonomous Hamiltonian systems, a single-input singular
LQR problem always admits an autonomous Hamiltonian
system.
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1. INTRODUCTION

Cheap control problem has been an important problem in
optimal control for a long time [1], [2], [3], [4]. This problem
continues to be an active area of research [5], [6], [7], [8].
These are those infinite-horizon optimal control problems
where the weighting on the control energy tends to zero.
In order to motivate such problems further, we revisit the
infinite-horizon linear quadratic regulator (LQR) problem
with cheap control first.

Problem 1.1. (LQR problem with cheap control) Consider
a controllable system with minimal state-space dynamics
d
dt x = Ax+Bu, where A ∈ Rn×n, B ∈ Rn×m. Then, for every
initial condition x0, find an input u that minimizes the
functional

J(x0,u) :=
∫

∞

0

[
x
u

]T [
Q S
ST ε2R̂

][
x
u

]
dt, (1)

where

[
Q S
ST ε2R̂

]
> 0, R̂> 0 and ε > 0.

The results in this paper deal with the limiting case of the
LQR Problem 1.1, i.e., the case when ε = 0. For the sake of
brevity, we define R := ε2R̂. Thus, for ε = 0, we have R = 0.
A well-known method to compute solutions to the LQR
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Problem 1.1 with R > 0 (called the regular LQR problem) is
to construct a state feedback matrix using a suitable solution
K (under proper assumptions) of the following algebraic
Riccati equation (ARE) [9]:

AT K +KA+Q− (KB+S)R−1(BT K +ST ) = 0 (2)

The feedback matrix F := R−1(BT K +ST ) gives the desired
optimal control law u :=−Fx that minimizes the functional
(1). However, for the case with ε = 0 (we call this the
singular LQR problem), such feedback matrices cannot be
constructed, since the ARE does not exist due to the sin-
gularity of R. This has been a long-standing problem in
optimal control literature, until recently, the authors in [6]
have established that singular LQR problems are solvable
using static state-feedback laws, like the regular case, if and
only if such a problem admits solution to a special form
of ARE called the constrained generalized continuous ARE
(CGCARE). For an LQR problem with R> 0, the CGCARE
takes the following form:{

AT K +KA+Q− (KB+S)R†(BT K +ST ) = 0

ker(R)⊆ ker(S+KB),
(3)

where R† is a generalized-inverse of R. Hence, a relevant
question is: when does the CGCARE admit a solution?
In [10] several necessary and sufficient conditions for the
solvability of CGCARE have already been proposed. In this
paper, we use these conditions to show that the CGCARE
is not solvable for the case when R = 0 (Theorem 3.1). A
special case of the singular case is the scenario where the
singular LQR problem arises out of a single-input system. It
has been recently established in the literature that the single-
input singular LQR problem can indeed be solved using a
proportional-derivative (PD) state-feedback controller [11].
Such a controller can be constructed using the maximal rank-
minimizing1 solutions of the LMI:[

AT K +KA+Q KB+S
BT K +ST R

]
> 0 (4)

For the ease of reference, we call LMI (4) the LQR LMI.
A natural question is: why would one use a PD-controller

1A matrix Kmax = KT
max is called a maximal rank-minimizing solution of

an LMI L (K)> 0 if L (Kmax) has the least rank among all the solutions of
L (K)> 0 and for any other solution K of the LMI, Kmax satisfies Kmax−K>
0.



for the single-input case (proposed in [11]) if a static state-
feedback controller can be obtained from CGCARE solutions
(proposed in [8])? In this paper we answer this question and
bridge the gap between the results of [8] and [11] (Theorem
3.5).

We use the symbols R and N for the sets of real numbers
and natural numbers, respectively. The symbol Rn×p denotes
the set of n× p matrices with elements from R. Symbol
In is used for an n× n identity matrix and 0nm is used to
denote an n× m matrix with all entries zero. The symbol
det(A) represents the determinant of a square matrix A. The
degree of a polynomial p(s) is denoted by deg(p(s)). The
symbol ker(Γ) denotes the kernel of a function Γ. A matrix

of the form
[
BT

1 BT
2 · · · BT

n

]T
is denoted by the symbol

col(B1,B2, . . . ,Bn).

2. PRELIMINARIES

In a singular LQR problem with R = 0, we must have S =

0. This condition on S needs to hold to ensure that the cost-

matrix

[
Q S
ST 0

]
is positive-semidefinite. Hence, the LQR

Problem 1.1 for ε = 0 takes the following form:

Problem 2.1. (Singular LQR problem with zero input-
cost) Consider a controllable system Σ with minimal state-
space dynamics d

dt x = Ax+ Bu, where A ∈ Rn×n and B ∈
Rn×m. Then, for every initial condition x0, find an input u
that minimizes the functional

J(x0,u) :=
∫

∞

0

(
xT Qx

)
dt, where Q> 0 and Q 6= 0. (5)

Since R† for the LQR Problem 2.1 is 0 and ker(R) =Rm,
the corresponding CGCARE is given by{

AT K +KA+Q = 0

Rm ⊆ ker(KB)⇒ KB = 0
(6)

The LQR LMI corresponding to the LQR Problem 2.1 is
given by[

AT K +KA+Q KB
BT K 0

]
> 0⇒

{
AT K +KA+Q> 0

KB = 0
(7)

The notion of Hamiltonian matrix pencils and Hamiltonian
systems is essential for this paper, hence we define them next
(see [12] for more on such pencils). Define the matrices:

E :=

In 0 0
0 In 0
0 0 0mm

 , and H :=

 A 0 B
−Q −AT 0

0 BT 0mm

 (8)

The matrix pair (E,H) is called the Hamiltonian matrix pair
and the pencil (sE−H) the Hamiltonian matrix pencil. It is

well-known that the matrix pair (E,H) induces a singular-
descriptor system of the form:In 0 0

0 In 0
0 0 0mm


ẋ

ż
u

=

 A 0 B
−Q −AT 0

0 BT 0mm


x

z
u

 (9)

The system in equation (9) is called the Hamiltonian system.
An output-nulling representation of this system is given by

d
dt

[
x
z

]
= Â

[
x
z

]
+ B̂u and 0 = Ĉ

[
x
z

]
, (10)

where Â :=

[
A 0
−Q −AT

]
, B̂ :=

[
B
0

]
and Ĉ :=

[
0 BT

]
. We

use the symbol ΣHam to denote the system in equation (10).
The notion of autonomy of a system is also crucial in

this paper, hence we present a result next that establishes a
condition to check the autonomy of a system.

Proposition 2.2. [13, Lemma 3.3] Consider the system d
dt x=

Ax+Bu and 0 = Cx, where A ∈ Rn×n, B ∈ Rn×m, and C ∈
Rp×n. Then, the system is autonomous if and only if G(s) :=
C(sIn−A)−1B is invertible as a rational matrix.

From Proposition 2.2 it is evident that the Hamiltonian
system in equation (10) is autonomous if and only if Ĉ(sI2n−
Â)−1B̂ is invertible as a rational matrix.

3. MAIN RESULTS

The first main result of this paper shows that a singular
LQR problem with zero input-cost cannot be solved with a
proportional (P) state-feedback controller.

Theorem 3.1. Consider the singular LQR Problem 2.1 with
the corresponding CGCARE given by equation (6). Let the
corresponding Hamiltonian system be as given in equation
(10). Then, the following statements are true:

1) CGCARE is not solvable.
2) There exists no proportional state-feedback controller

that solves the singular LQR Problem 2.1.

In order to prove this theorem we need to first review a
result in [11, Statement 4, Theorem 1].

Proposition 3.2. Consider the singular LQR Problem 2.1
with the corresponding CGCARE given by equation (6).
Let the corresponding Hamiltonian system be as given in
equation (10). Then, the CGCARE is solvable if and only if2

Ĉ(sI2n− Â)−1B̂ = 0 (as a rational matrix).

Proof of Theorem 3.1: 1) To the contrary, assume that
CGCARE is solvable. Then, from Proposition 3.2 it is

2For singular LQR problems with R = 0, the reduced Hamiltonian system
(as defined in [10, Equation 10]) and the Hamiltonian system (equation (10))
are the same.



evident that we must have H(s) := Ĉ(sI2n−Â)−1B̂= 0, where
Â, B̂, and Ĉ are as defined in equation (10). For H(s) to be
identically zero, all the Markov parameters of H(s) must be
zero, i.e., ĈÂ`B̂ = 0 for all ` ∈ N∪{0}.

We first claim that if ĈÂ`B̂ = 0 for all ` ∈ N∪{0}, then
QAkB = 0 for all k ∈N∪{0}. We prove this using induction.
Base case: (k = 0) For `= 1, we know that

ĈÂB̂ = 0⇒
[
0 BT

][ A 0
−Q −AT

][
B
0

]
= 0

⇒ BT QB = 0 (11)

From equation (11) and the fact that Q> 0, it is evident that
QB = 0.
Induction step: Assume QAiB= 0 for 06 i6 k−1. We prove
that QAkB = 0.

ĈÂ(2k+1)B̂ =[
0 BT

][ A 0
−Q −AT

][
A 0
−Q −AT

]2k−1[
A 0
−Q −AT

][
B
0

]

=
[
−(QB)T −(AB)T

][ A 0
−Q −AT

]2k−1[
AB
−QB

]

=
[
0 −(AB)T

][ A 0
−Q −AT

]2k−1[
AB
0

]

=
[
−(QAB)T (A2B)T

][ A 0
−Q −AT

]2k−3[
A2B
−QAB

]
(12)

Using the induction hypothesis, QAB = 0 in equation (12),
we have

ĈÂ(2k+1)B̂ =
[
0 (A2B)T

][ A 0
−Q −AT

]2k−3[
A2B

0

]
Proceeding in a similar way and using the assumption that
QAiB = 0 for all 06 i6 k−1, we infer from equation (12)
that

ĈÂ(2k+1)B̂ =
[
0 (−1)k(AkB)T

][ A 0
−Q −AT

][
(−1)k(AkB)

0

]
=−(AkB)T Q(AkB) = 0⇒ QAkB = 0

This completes the mathematical induction. Thus, we can
write Q

[
B AB · · · An−1B

]
= 0. However, for a control-

lable system
[
B AB · · · An−1B

]
is a full row-rank ma-

trix. Therefore, we must have Q = 0. This is a contradiction
to the assumption that Q 6= 0 and hence Ĉ(sI2n− Â)−1B̂ 6= 0.
Thus, from Proposition 3.2 we infer that the CGCARE is not
solvable.
2) From [7, Theorem 1] it is known that a singular LQR
problem admits a static state-feedback controller if and only
if the corresponding CGCARE is solvable. From Statement

(1) of this theorem, we know that CGCARE is not solvable
for the LQR Problem 2.1. Hence, there exists no proportional
state-feedback controller that solves the singular LQR Prob-
lem 2.1. �

We present an example next to illustrate the results in
Theorem 3.1.

Example 3.3. Consider a system with state-space dynamics

d
dt

x =

1 0 1
1 0 1
1 1 0

x+

0 0
1 0
0 1

u

For every initial condition x0, find an input u that minimizes
the functional

∫
∞

0

(
xT Qx

)
dt, where Q :=

0 0 0
0 0 0
0 0 1

 .

Let K =

k1 k2 k4

k2 k3 k5

k4 k5 k6

 be a solution of the CGCARE cor-

responding to this problem. Therefore we have AT K+KA+

Q = 0, i.e.,[
2(k1+k2+k4) k2+k3+k4+k5 k1+k2+k4+k5+k6
k2+k3+k4+k5 2k5 k2+k3+k6

k1+k2+k4+k5+k6 k2+k3+k6 2(k4+k5)+1

]
= 0 (13)

The constrained equation in this case becomes

KB = 0⇒

[
k2 k3 k5

k4 k5 k6

]T

= 0 (14)

Using solution of equation (14) in ARE (13), we have2k1 0 k1

0 0 0
k1 0 1

= 0 (15)

Evidently, equation (15) is not solvable. Thus, the CGCARE
does not admit a solution in this case.

In Example 3.3 one can verify that the Hamiltonian matrix
pencil (sE−H) is singular. This means that the Hamiltonian
system ΣHam for Example 3.3 is non-autonomous (see Ex-
ample 3.6). Unlike Example 3.3, the next example shows the
existence of singular LQR problems that admit autonomous
Hamiltonian system ΣHam.

Example 3.4. Consider a system with state-space dynamics

d
dt

x =

1 0 1
1 0 1
1 1 0

x+

0 0
1 0
0 1

u



For every initial condition x0, find an input u that minimizes
the functional

∫
∞

0

(
xT Qx

)
dt, where Q :=

0 0 0
0 1 0
0 0 1

 .
On constructing Â, B̂, and Ĉ and computing Ĉ(sI2n− Â)−1B̂,
we get

H(s) := Ĉ(sI2n− Â)−1B̂ =


−s4 +4s2−2

s2(s4−5s2 +4)
−1

s4−5s2 +4
−1

s4−5s2 +4
−s2 +2

s4−5s2 +4


It can be verified that det(H(s)) 6= 0 and hence, H(s) is
invertible as a rational matrix. Thus, the Hamiltonian system
is autonomous. Note that from Proposition 3.2 it is evident
that the CGCARE is not solvable for this problem.

From Example 3.3 and Example 3.4 it is clear that singular
LQR problems with zero input-cost can admit both au-
tonomous and non-autonomous Hamiltonian systems. How-
ever, in the next theorem, we establish that such a scenario
never arises for a single-input singular LQR problem. Single-
input singular LQR problems always admit autonomous
Hamiltonian system. Note that the single-input singular LQR
problem is a special case of the singular LQR Problem 2.1.
Theorem 3.1 for the single-input case takes the following
form:

Theorem 3.5. Consider the singular LQR Problem 2.1 with
B ∈ Rn. Let the corresponding CGCARE and the Hamilto-
nian system be as given by equation (6) and equation (10),
respectively. Then, the following statements are true:

1) CGCARE is not solvable.
2) There exists no proportional state-feedback controller

that solves the singular LQR Problem 2.1.
3) ΣHam is an autonomous system.

Proof. 1) and 2): Proof of Statement 1) and Statement 2)
directly follows from Theorem 3.1.
3): To the contrary assume that ΣHam is non-autonomous.
Note that for the single-input case Ĉ(sI2n − Â)−1B̂ is a
rational function. Hence, for the system ΣHam to be non-
autonomous, the Markov parameters ĈÂ`B̂∈R must be equal
to zero. From the proof of Statement 1) of Theorem 3.1 it is
clear that if ĈÂ`B̂ = 0 for all `∈N∪{0}, then QAkB = 0 for
all k ∈ N∪{0}. However, since the system is controllable,
we must have Q = 0 if QAkB = 0 for all k ∈ N∪{0}. This
is a contradiction. Therefore, Ĉ(sI2n− Â)−1B̂ is a non-zero
rational function and hence, is invertible. Using Proposition
2.2, we infer that ΣHam is autonomous.

For the multi-input case Statement 3 is not valid. This is
because for the multi-input case there can be systems with
Ĉ(sI2n− Â)−1B̂ 6= 0 but with det(Ĉ(sI2n− Â)−1B̂) = 0. We
illustrate this with the help of Example 3.3.

Example 3.6. Recall that the problem in Example 3.3 have

A =

1 0 1
1 0 1
1 1 0

 ,B =

0 0
1 0
0 1

 ,Q =

0 0 0
0 0 0
0 0 1


On constructing Â, B̂, and Ĉ and computing Ĉ(sI2n− Â)−1B̂,
we get

H(s) := Ĉ(sI2n− Â)−1B̂ =


1

s4−4s2
1

s3−4s
−1

s3−4s
−1

s2−4

 (16)

Thus, H(s) is not a zero matrix. However, det(H(s)) = 0 and
hence, Ĉ(sI2n− Â)−1B̂ is not invertible as a rational matrix.
Therefore, ΣHam is not autonomous.

Interestingly, it has been established in [11] that in order
to solve a single-input singular LQR problem one needs to
use a proportional-derivative (PD) controller. The procedure
to design the same is given in [11, Theorem 3].

Example 3.7. Consider a system with state-space dynamics

d
dt

x =

1 0 1
1 0 1
1 1 0

x+

0
1
0

u

For every initial condition x0, find an input u that minimizes
the functional

∫
∞

0

(
xT Qx

)
dt, where Q :=

0 0 0
0 0 0
0 0 1


The ARE corresponding to the CGCARE of this problem is
the same as that in equation (13). The constrained equation
in this case becomes

KB = 0⇒
[
k2 k3 k5

]T
= 0 (17)

Using equation (17) in equation (13), we have 2(k1 + k4) k4 k1 + k4 + k6

k4 0 k6

k1 + k4 + k6 k6 2k4 +1

= 0 (18)

Clearly, equation (18) is not solvable. Thus, the CGCARE
does not admit a solution in this case. Hence, there exists
no proportional state-feedback controller that solves the
problem. However a PD state-feedback controller of the form
u = Fpx+Fd d

dt x, where

Fp =
[
2g 0 g

]
, Fd =

[
−1 1 0

]
, with g ∈ R



solves the problem (see [11] for a method to construct such
controllers). The closed-loop system obtained on application
of such a feedback is (I3−BFd) d

dt x = (A+BFp)x. Here

I3−BFd =

1 0 0
1 0 0
0 0 1

 , and A+BFp =

 1 0 1
1+2g 0 1+g

1 1 0


Note that det

(
s(I3−BFd)− (A+BFp)

)
=−g(s+1). Thus, if

we chose any g∈R\0 then det
(
s(I3−BFd)− (A+BFp)

)
6=

0, i.e., the closed loop system is autonomous. Hence, for
any value of g ∈ R\0, we have a PD-controller that solves
the singular LQR problem. Note that there are multiple PD-
controllers that solve this problem.

Observe that for the results in this paper to be true the
system under consideration needs to be controllable but not
necessarily observable. This becomes evident if we consider
the system to be in the Kalman decomposition form. Without
loss of generality, we assume the structure of (A,B,Q) to be
of the following form:

A =:

[
A11 A12

0 A22

]
,B =:

[
B1

B2

]
,Q =:

[
0 0

0 Q3

]
, (19)

where A11 ∈ Rc×c, A22 ∈ Rq×q, B1 ∈ Rc×m, and Q3 = QT
3 ∈

Rq×q. From Proposition 3.2 it is clear that CGCARE is
solvable if and only if ĈÂ`B̂ = 0 for all ` ∈N∪{0}. Further,
from the proof of Theorem 3.1 it is evident that ĈÂ`B̂ = 0
for all ` ∈ N∪ {0} implies that QAkB = 0 ⇒ Q3Ak

22B2 =

0 for all k ∈ N ∪ {0}. Since for a controllable system,
(A,B) controllable⇒ (A22,B2) controllable, we cannot have
Q3Ak

22B2 = 0 for all k∈N∪{0}. Thus, even for a controllable
and unobservable system, CGCARE corresponding to a zero
input-cost won’t have a solution. The next example illustrates
this.

Example 3.8. Find an input u for the system d
dt

[
x1

x2

]
=[

−1 0
0 0

][
x1

x2

]
+

[
1
1

]
u such that it minimizes the cost-

functional
∫

∞

0 (xT Qx)dt, where x :=

[
x1

x2

]
and Q =

[
0 0
0 1

]
.

Let K :=

[
k1 k2

k2 k3

]
. Then observe that

AT K +KA+Q = 0⇒

[
−2k1 −k2

−k2 1

]
6= 0

Thus, the CGCARE is not solvable in this example. This is
indeed expected since the Hamiltonian system in this case is
autonomous (observe that det(sE−H) = s2−1 here).

However, using the method described in [11], one can
compute many PD-controllers that can solve the problem at
hand. One such controller, for example, is u = x2 +

d
dt x2.

Note that if we consider B2 = 0 in equation (19), i.e., apart
from (A,Q) unobservability, the system is uncontrollable as
well, then Â`B̂= col(A`

11B1,0qm,0cm,0qm) for all `∈N∪{0}.
Thus, ĈÂ`B̂ = 0 for all ` ∈ N∪{0}. This however does not
guarantee solvability of CGCARE. We illustrate this in the
next example.

Example 3.9. Find an input u for the system d
dt

[
x1

x2

]
=[

−1 0
0 0

][
x1

x2

]
+

[
1
0

]
u such that it minimizes the cost-

functional
∫

∞

0 (xT Qx)dt, where x :=

[
x1

x2

]
and Q =

[
0 0
0 1

]
.

Let K :=

[
k1 k2

k2 k3

]
. Then observe that

KB = 0⇒

[
k1

k2

]
= 0

Thus, we have

AT K +KA+Q =

[
0 0
0 1

]
6= 0

Thus, CGCARE is not solvable for this system. This shows
that Proposition 3.2 is valid only for controllable systems.

The discussion above illustrates that the results in this
paper hold for controllable systems only.

4. CONCLUSION

In this paper, we established that the limiting case of
the cheap control problem (ε = 0) cannot be solved using
a proportional state-feedback controller. To this end we
showed that such a problem never admits solution to its
corresponding CGCARE (Theorem 3.1). Interestingly, such
problems may admit both autonomous and non-autonomous
Hamiltonian systems (Example 3.4 and Example 3.6). How-
ever, if such a problem arises out of a single-input system,
then the corresponding Hamiltonian system is always au-
tonomous (Theorem 3.5). For single-input systems autonomy
of the Hamiltonian system helps in explicit characteriza-
tion of the trajectories of the Hamiltonian system. Such a
characterization in turn aids us to characterize the optimal
trajectories of a singular LQR problem [11, Theorem 1].
Similar to the single-input case, we think that for the multi-
input case too autonomy of the Hamiltonian system can be
similarly exploited. This is a matter of our future research.
To summarize, the results in this paper establish that for LQR



problems with R = 0, the results in [8] are not applicable.
For the case when the singular LQR problem arises from a
single-input system, the results in [11] can be used to design
PD state-feedback controllers to solve the problem at hand.
This bridges the gap between the results in [8] and [11].
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