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Abstract: In this paper we first characterize the slow space (see Definition 9) of a given state-
space system. We provide this characterization in terms of an eigenspace of the corresponding
Rosenbrock matrix pair. We also characterize the “good” slow space (see Definition 11) in terms
of a stable eigenspace of the Rosenbrock matrix pair. Moreover, we show how the dimensions of
these subspaces can be calculated from the determinant of the Rosenbrock matrix pencil. Then,
we apply these results to the Hamiltonian system arising from the singular linear quadratic
regulator (LQR) problem and explore a few interesting properties of the good slow space of this
Hamiltonian system. Finally, we provide a feedback law to achieve the smooth optimal solutions.
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1. INTRODUCTION

Singular LQR problem is one of the classical problems
in systems and control theory (Francis (1979), Hautus
and Silverman (1983), Willems et al. (1986)). This prob-
lem is still an area of active research (Kalaimani et al.
2013), Reis et al. (2015), Ferrante and Ntogramatzidis
2018),Bhawal and Pal (2019)). The following is the formal
statement of the infinite-horizon LQR problem:

Problem 1. Consider the stabilizable system defined by
4 p(t) = Az(t) + Bu(t), where A € R**® and B € R*™™,
Then, for every initial condition 2(0) = zo, find an input
u(t) that minimizes the functional

J(w0,u) = /OOO [ﬁggr [s% ;} [igg] dt, (1)

with tlim z(t) = 0, where Q € R*** § € R**® R € R®*™,
—00

Qs

such that {ST R} > 0.
Problem 1 is called a reqular LQR problem if R > 0, and a
singular LQR problem if R > 0 with R being singular. It is
well-known in the literature that the regular LQR problem
admits an algebraic Riccati equation (ARE) given as:

ATK + KA+Q — (KB+ S) R (BTK +57) =0. (2)
If Kpay is the maximal solution of equation (2), that is,
K.y — K > 0 for any other solution K of the ARE,
then the LQR Problem 1 can be solved by using the
feedback law u = Fx, where F := —R™1(BT Koy + ST).
Notice from equation (2) that the existence of an ARE
crucially depends on the invertibility of R. Naturally,
a singular LQR problem does not admit an ARE and
consequently can not be solved using the feedback law as
mentioned before. Hautus and Silverman (1983) deals with
the solution of the singular LQR problem, but a feedback
solution for the problem has not been provided there.
In Reis et al. (2015), the notion of deflating subspaces
has been used to provide a linear implicit control law

which, unfortunately, often turns out to be not feedback
implementable. The theory presented in Reis et al. (2015)
assumes that the state and the input of the system are
from the space of locally square-integrable functions. This
assumption prevents the presence of impulses in the input
and the states. Reis et al. (2015) also imposes a restriction
on the initial condition of the system. Such a restriction
on the initial condition is not desirable, because an initial
condition of a system should ideally be free. For single-
input systems, Bhawal and Pal (2019) provides a solution
for any arbitrary initial condition. They also provide a
PD feedback law for the optimal solution. Since the initial
condition is free, the optimal trajectories corresponding to
certain initial conditions are impulsive in nature. Hence,
the function space assumed in Bhawal and Pal (2019)
allows impulses in the input and the states. This solution
is based on the notion of the slow subspace and the
fast subspace of the Hamiltonian system arising from the
singular LQR problem (Bhawal et al. (2019b)). We wish
to extend the result based on the notion of slow and fast
subspaces of the Hamiltonian system to the case of multi-
input systems in our future research. Therefore, in this
paper we characterize the slow space of the Hamiltonian
system in terms of an eigenspace of the Hamiltonian
matrix pencil. We also provide a static feedback law for
the smooth optimal solutions.

We characterize the slow space of the Hamiltonian system
in two steps. First, we characterize the slow space and
the good slow space for the system X : %x = Az + Bu,
y = Cx + Du, where A € R**® B,CT € R**® D ¢ RPXP,
In Hautus and Silverman (1983), it has been shown that
the slow space is the largest subspace V for which there
exists F € R™"® gsuch that (A + BF)Y C V and (C +
DF)Y = 0. The good slow space is the largest such
subspace with an additional condition that (A + BF)|y is
Hurwitz. In this paper, we give an explicit characterization
of the slow and the good slow spaces of the system, for the
case when p = m (for a Hamiltonian system, this condition



is always satisfied), in terms of an eigenspace and a stable
eigenspace of the corresponding Rosenbrock matrix pair
([%0],[& B]), respectively. We also show how to obtain
the dimension of these spaces from the determinant of the
Rosenbrock matrix pencil. Then, we apply these results
to the Hamiltonian system to obtain its good slow space.
We also show how the good slow spaces of the primal (see
Definition 15) and the Hamiltonian are related.

The results presented in this paper are extensions of a few
results presented in Bhawal et al. (2019b). In Bhawal et al.
(2019b) the results have been proved for the single-input
case only, whereas in this paper we provide the proofs
for the multi-input case. Furthermore, in Bhawal et al.
(2019b) the matrix D in the output equation of the system
Y. has been assumed to be zero. But, in this paper we have
not made such an assumption. Also, for the single-input
case of the singular LQR problem R = 0, but in the multi-
input case R is not-necessarily zero. Hence, the structure of
the Hamiltonian system corresponding to the multi-input
case is significantly different from that of the single-input
case. These issues make the extension nontrivial.

The organization of the paper is as follows: In Section
2 we provide the notation used in this paper and dis-
cuss the necessary preliminaries. Section 3 deals with the
characterization of the slow and the good slow spaces.
Then, we apply these results to the Hamiltonian system
corresponding to the singular LQR problem in Section 4.
We conclude in Section 5 with some possible direction for
future work.

2. NOTATION AND PRELIMINARIES

We first present the various notation used throughout this
paper, then we discuss a few preliminaries required for the
development of the theory presented in this paper.

2.1 Notation

The symbols R, C, and N are used for the sets of real
numbers, complex numbers, and natural numbers, respec-
tively. R4 denotes the set of non-negative real numbers.

We use the symbols C; and C_ for the closed right-half
and the open left-half of the complex plane, respectively.
The symbol R**P denotes the set of n x p matrices with
elements from R. We use e when a dimension need not
be specified: for example, R**® denotes the set of real
constant matrices having w rows. We use the symbol I, for
an n X n identity matrix and the symbol O, for an n x m
matrix with all entries zero. Symbol col(Bj, Bs,...,B,)

represents a matrix of the form [Bf BY ... BT ]T. The sym-
bol det(A) represents the determinant of a square matrix
A. Symbol rank A denotes the rank of a matrix A. We use
the symbol roots(p(s)) to denote the set of roots (over
C) of a polynomial p(s) with real or complex coefficients
(counted with multiplicity). The symbol deg(p(s)) is used
to denote the degree of the polynomial p(s). The symbol
o(T') denotes the set of eigenvalues of a square matrix T’
(counted with multiplicity). The symbol |I'| denotes the
cardinality of a set T' (counted with multiplicity). We use
the symbols A|s to denote the restriction of a matrix A
to a subspace S (with respect to a suitable basis) and
o(A|s) to represent the set of eigenvalues of A restricted
to the subspace S. We use the symbol dim(S) to denote
the dimension of a space §. The symbol img A and ker A
denote the image and nullspace of a matrix A, respectively.
The space of all infinitely differentiable functions from R to
R® is represented by the symbol €>° (R, R"). The symbol
€ (R,R?) |r, represents the set of all functions from R

to R that are restrictions of € (R, R®) functions to R.

2.2 Regular matriz pencils and their canonical form

Linear matrix pencils and their eigenvectors are crucially
used throughout this paper. Hence, we define eigenvalues
and eigenvectors of a linear matrix pencil next.
Definition 2. Consider a regular matrix pencil (sU; —
UQ) S R[S]nxn, ie., det(3U1 — U2) # 0. Let A €
roots (det(sU; — Usz)). Then X is called an eigenvalue of
(U1,Us) and every nonzero vector v € ker (AU; — Us)
is called an eigenvector of the matrix pair (Uy,Us) cor-
responding to the eigenvalue A. Further, every nonzero
vector 0 € ker (\U; — Us)", where i € {2,3,...}, is called
a generalized eigenvector of the matrix pair (Uy,Us) cor-
responding to the eigenvalue A.

We use the symbol o(Uy, Us) to denote the set of eigenval-
ues of (U, Us) (with A € (U1, Us) included in the set as
many times as its algebraic multiplicity).

In this paper, we extensively use one of the canonical
forms of a linear matrix pencil (see Dai (1989) for more on
different canonical forms). We review the result that leads
to such a canonical form next (Dai, 1989, Lemma 1-2.2).

Proposition 3. A matrix pair (Uy,Us) is regular, i.e.,
det(sU; — Us) # 0 if and only if there exist nonsingular
matrices Z and Zs such that Z1UyZy = diag(l,,, N) and
Z1UsZy = diag(U, Inz), where n; + ny, = II,U € Rnlxnl,
and N € R®2*"2 ig nilpotent.

A matrix pair (U;,Us) in the form ({161 J(H , {% I‘(‘J?D

is said to be in a canonical form. Further, note that
det(sU; —Usy) = k xdet(sl,, —U), where k € R\ {0}. The
following two lemmas provide some important properties
related to the generalized eigenspaces of a matrix pair.

Lemma 4. Consider the matrix pair ([I‘(‘Jl 1(\]7} , [‘({ 1,?2})7

where U € R™*™ and N € R®*®2 ig nilpotent. Let
Wy € R >k Wy € R®2%% and I’ € R¥*¥ be such that

Sl =leslwle
Then, Wg =0.

Proof. From equation (3), we get Wy = NWaT. Now, if
we keep substituting /V\V/g =N ng on the right-hand side
of the equation, then clearly we have Wa = NiW,I" for all
i € N. But, N is a nilpotent matrix. Therefore. Wg =0.0

Lemma 5. Let the matrix pair (Uy,Us) with Uy, Us €
R**® be such that degdet(sU; — Us) =: ny # 0. Then,

(1) There exist a full column-rank matrix W € R**®t and
I € R ™ with det(sl,, —I') = det(sU; — Us) such
that UQW = U1WF

(2) There exist T1,7T> € R**® non-singular such that
T1U1T2 = diag(Inl,N) and T1U2T2 = diag(I‘,Inz),
where n; +ny = n and N € R®2*®2 jg nilpotent.

Proof. (1): According to Proposition 3, there exist
71, Zo € R**™ non-singular such that Z;U; Zo =diag(l,,,N)
and Z Uz Zy = diag(U, I,,), where U € R *™  det(sl,, —
U) = det(sU; — Us) , and N € R™*™ is nilpotent.
Evidently, if a matrix I' € R™*™ is similar to the
matrix U, then there exists W; € R *® pon-singular

such that UW; = W;I. Then, clearly, [%1?2} [VKI] =

[161 [(3]} [Vgl] I' holds. Consequently, the equation UsW =

UyWT is satisfied, where W := Z,* [Wr]. Since Wy €



R™*21 ig non-singular, we must have that W € R**™ ig
full-column-rank. Also, det(sl,, — I')=det(sl,, — U) =
det(sU; —Uz). This completes the proof of Statement (1).
(2): From the proof of Statement (1) we have Wy~ 'ow, =

T. Define T': =diag(Wh, I,,), T} =T" 17, and Ty:= ZT.
It is evident that 77 and T, are non-singular. Further,
it is easy to verify that TWU1T» = diag(l,,,N) and
T1U2T2 = diag(I‘,In2). O

2.3 (A, B)-invariant subspace

Notion of (A, B)-invariance is pivotal for the theory devel-
oped in this paper. Thus, we present the formal definition
of (A, B)-invariance next.

Definition 6. Consider A € R**® and B € R**™ A
subspace V C R* is said to be (A, B)-invariant if there
exists F' € R™*® such that (A + BF)V C V.

The following Proposition (see (Wonham, 1985, Lemma
4.2)) provides us with a method to determine whether a
given subspace is (A, B)-invariant.
Proposition 7. A subspace V C R is
and only if AV CV + imgB.

(A, B)-invariant if

Corresponding to an (A, B)-invariant subspace V, we de-
fine the set

F(V) :={F e R™*" | (A+ BF)V C V}.
Suppose V is an (A, B)-invariant subspace, and assume
that S CV is an (A, B)-invariant subspace as well. Then,

the following Proposition from (Wonham, 1985, Lemma
5.7) shows a relation between F(S) and F(V).

Proposition 8. Assume that V and S are (A, B)-invariant
subspaces such that S C V. If Fy € F(S), then there exists
F e ]F(V) n F(S) such that F‘S = F0|5.

2.4 The slow subspace

Definition 9. Consider the system %x(t) = Az(t)+Bu(t),
y(t) = Cx(t) + Du(t). A state zp € R* is called weakly
unobservable if there exists an input u € € (R,R") [r,
such that y(t;xg,u) = 0 for all ¢ > 0, where y(t; zo, u)
is the output of the system corresponding to the initial
condition z¢ and the input u(t). The collection of all such
weakly unobservable states is called the weakly unobserv-

able subspace or the slow space of the state-space and is
denoted by O,,.

The following property of the slow space is crucially used
in this paper (see (Hautus and Silverman, 1983, Theorem
3.10)).

Proposition 10. The slow space O, is the largest subspace
V of the state-space for which there exists a feedback
F € R™*® guch that

(A+BF)Y CV and (C + DF)V = 0. (4)

In other words, if V is any subspace that satisfies equa-
tion(4), then V C O,,.

An important subspace of the slow space, O,, is the “good”
slow space O,,4. We formally define this subspace next.

Definition 11. The good slow space O, is the largest
subspace V of the state-space for which there exists a
feedback F' € R™® such that

(A+ BF)V CV, (C+ DF)Y =0,
o((A+ BF)|y) C C_. (5)

In other words, if V is any subspace that satisfies equation
(5), then V C O,,.

and

3. CHARACTERIZATION OF THE SLOW SPACE

Consider the system 3 given by the input-state-output
representation

%x(t) = Az(t) + Bu(t), y(t) = Cz(t) + Du(t), (6)

where A € R*>® B ¢ R¥™® (C € R*™® and D €
R™*® Corresponding to this system, we define the matrices

U, = []51 8:| € REtWx@tn) ang [, = |:é g] . (D

The pair (Uy, Us) is called the Rosenbrock matrix pair and
the matrix (sU; — Us) is the Rosenbrock matrix pencil
corresponding to the system 3. Throughout this paper we
assume that the matrix pencil (sU; — Us) is regular, i.e.,
det(sU; — Us) # 0.

We present this section in two parts. In the first part, we
characterize the slow space of ¥, and in the second part
we characterize the good slow space of X.

8.1 Characterization of the slow space in terms of an
eigenspace of the Rosenbrock matriz pair

In the following theorem we characterize the slow space,
O, of the system ¥ in terms of the generalized eigenspace
of the Rosenbrock matrix pair (Uy, Uz). This theorem also
provides us with the dimension of the subspace O,,.

Theorem 12. Consider the system X defined in equation
(6) and the corresponding Rosenbrock matrix pair (Uy, Us)
as defined in equation (7). Assume that det(sU; —Us) # 0

and degdet(sU; — Us) =: ng. Let V3 € R**™ and V;, €
R™*® be such that col(V, Va) is full column-rank and

BAR-EAR o
U, U,

where J € R®*® and det(sl,, — J) = det(sU; — Us).
(Such V1, Va, and J exist due to Lemma 5.) Let O,, be the
slow space of . Then, the following statements hold:

1) V4 is full column-rank.
2) Oy = imgh.
3) dim(O,) = ns.

Proof. (1): To the contrary assume that V; is not full
column-rank. Then, there exists a non-singular matrix T €

R® %% guch that [ ]T = [“21 ng], where Vi, € R2>m,

np := rankVj, and Vay € R™ (@11 Define J:=T"1JT.
So, from equation (8) it follows that

AB||Vin 0| _ L0} |Viy O J11 J12 ()
C D| Va1 Voo 0 0| [Var Vao| | Joy Jool’
g

J

where the partition in J conforms to the partition in

[“21 ‘/22 ] Equation (9) can equivalently be written as

AV 4+ BV = V11j117 BVyy = V11jlz,
CVi1 + DV =0, and DVay = 0. (10)
From equation (10) it is clear that the ng and J22 blocks
1n J are free; in particular, ng = 0 € Rmem)xm 4pd
Jy=0¢ R(ns_nl)x(ns_nl) also satisfy equation ( ). In that
case 0 € o(J). This is a contradiction, because J = T~ JT



and thus det(sl,, — J) = det(sl,, — J) = det(sU; —
Us). But, we have assumed that det(sU1 Us) # 0. So,
det(sl, — J) # 0. Hence, 0 ¢ o(J). This implies that our
assumptlon that Vj is not full column-rank cannot be true.
Hence, V7 is full column-rank.

(2): From Statement (1) of this theorem we get that V; is

full column-rank. Thus, there exists F' € R™® such that
Vo = FV;. So, equation (8) can also be written as
(A+BF)V1 :V1J and (C+DF)V1 =0. (11)
From equation (11) and Proposition 10 it follows that
imgVy C O,. Next, we prove that imglVy = O,. To the
contrary assume that imgly # O,. Thus, there exists a
non-trivial subspace V, such that imgV; &V, = O,,. Define
¢ := dimV, and let V, € R®*¢ be full column-rank such that
imgVe = V.. Now, from Proposition 8 and Proposition
10 it is evident that there exists F, € R™*® such that

Fe|imgV1 = F‘imng and

(A+ BE,)O, C O, and (C + DE,)O, =0. (12)
Thus, from equation (11) it follows that

(A+ BE)V, = ViJ and (C + DE)V, =0.  (13)

Also, since imgV, C O, from equation (12) it is clear that
there exist T} € R2*¢ and T, € R¢*¢ such that
(A+ BF.,)V, = [V V] El

Recall that Fe|ingv, = F'|ingv; . Thus, FoVi =FV; =Vs. So,
combining equation (12) and equation (14) together, we get

AB| Vi Vo[ [0 |V1 Ve |JTh

C D||Va Vae| |00 |V2 Vae| |0 Te|’
where Vae := F,V,. Considering the fact that degdet(sU; —
Us) = ng, from Statement (2) of Lemma 5, it is clear that

there exist nonsingular matrices Y, Z € Re+mx(m+m) gych
that

] and (C + DF,)Ve =0. (14)

(15)

Up=Y [ %] Zand U, =Y [{9] Z, (16)

where N € R(etn—ne)x(ntn-n:) is 5 pilpotent matrix. Thus,
using equation (16) in equation (15) we further get that

vignz[hvil=Y [ x]Z[W ] [0 7]

orlgf12lvv] =5 y12l ]l
Define Z[&] =: [gﬂ and Z [Vze] : [éf;]’ where 171 €
R>2: and V, € R**¢. We rewrite equation (17) as

AR IR A
01 ‘/2 Ver 0 N V2 ‘/Qe 0 Te .

Thus, from Lemma 4, we have [172 ‘726} = 0. Since 7 is

(17)

non-singular, rank [51 }:rank [?1 }:rank [Vl }Zns Thus,
2

Vi is non- singular, which further implies that 1mgV C
imgV;. As a consequence

1mg[“//2j 1mg[A}C1mg{V1}:>1mg[ ]Clmg[ }

Therefore imgV, C imgV;. This is a contradiction. There-
fore there does not exist any nontrivial subspace V, such
that imgVy @ V. = O,,. This, again, is a contradiction to
the assumption that imgl; # O,. Hence, O,, = imgV;.

(3): Since rankV;j = ng, from Statement (2) of this theorem
it directly follows that dim(Q,,) = ns. O

8.2 Characterization of the good slow space in terms of a
stable eigenspace of the Rosenbrock matriz pair

In this section we characterize the good slow space of the
state-space system X given by equation (6). Notice that,
we can partition o(J) as o(J) = o4(J) U op(J), where
0g(J) € C_ and oy(J) C Cy. Define ng = |og(J)|.
Clearly, there exists a non-singular matrix 7' € RPs*"s

such that T-1JT = [Jg O], where J; € R%*%, J, €

0 Jo
REs—2)X(@s=00) (], ) = 04(J), and o (Jy) = op(J). Define

Vig Vis
[T = [Vere], (19)
where Vg € R**® and V3, € R™* (®~7) S0, from equation
(8) it follows that

b ] = [ 3] [z} o

or A B| |Vig Vie|_ |1 O |Vig Viu| |Jg O (20)
"|C D| [Vag Vap| |0 0| |Vog Vap| |0 Ju|~
In the following lemma we show that the good slow space,
Ouwg of X is given by the subspace imgVy,.
Lemma 13. Consider the system ¥ and the corresponding

Rosenbrock matrix pair (U, Us) as defined in equation
(6) and equation (7), respectively. Assume that det(sU; —

Us) # 0. Consider the matrix Vi, € R™™ as defined
in equation (19) and ng = |og(J)|. Then, the following
statements hold:

(1) Vig is full column-rank.
(2) Oy = imgVi,.
(3) dim(Oyy) = ng.

Proof. (1): From Statement (1) of Theorem 12, we know
that V7 is full column-rank. Now, since T is non-singular,
it is evident that ViT = [Vig Vip] is full column-rank.
Consequently, Vg is full column-rank.

(2): Since Vig is full column-rank, there exists F, € R™**
such that Vag = FgVig. Thus, from equation (20) it follows
that (A+ BFg)Vig = VigJg and (C'+ DFg)Vig = 0. Recall
that o(J;) € C_. Thus, imgViy; C Ouy. Now, to the
contrary, we assume that imgVi, # Owg So there exists
a non-trivial subspace Veg such that imgVig @ Veg = Oyy.

Define neg := dimV,, and let Vo, € R* %= be such that
imgVes = Veg. Next, by Deﬁnltlon 11, there exists Fz €

R™® such that (A 4+ BFeg)Oyg C (’)wg, (C+ DFg) =0,
0((A+BFg)|o,,) € C_, and Feglingvy, = Fglingvy,- Thus,
there exist 77 € R®*%e and To € R™e*"= such that

A Bl [Vig Vag| _ [l 0] [Vig Vg | [Je T1] gy
¢ D ‘/Qg VQeg 100 ‘/2g ‘/Qeg 0 T2 ’
N—— ~——

U2 Ul
where o(T3) C C_, Vaeg 1= FogVeg, and Vop = FgVip =
FegVig (. Feglingvi, = Fglingvy, ). Now, similar to the proof

of Statement (2) of Theorem 12, we use equation (16) in
equation (21i to obtain

Vig Ve L, 0 Vig Ve Jg T
(5217 | vy VQSJ =[% ~] Z[Vaz V25J [0 T;] (22)

01
Define Z[Vlg} [glg}

2g

and Z[V;;}:;[QV% ] where Vig €

2eg

R %" and Veg € R=*", Thus, from equation (22), we get



JO| [Vig Veg] _ [Io, 0] [Vig Veg | [Je T (23)

01 VZg Vv?eg 0N Vv2g ‘/Qeg 0 T2 .
From Lemma 4, it follows that [I//\'Qg %eg} = 0. Thus,
equation (23) reduces to

Tg Tl} . (24)

J [Vlg Veg] = [Vlg Veg] [() Ty
From equation (24), it is evident that o (Jg)Uo (T2) C o(J).
But, we have assumed that o(J) N C_ = o(Jg). Hence,
o(Ty) C C,. This is a contradiction. Accordingly, there

does not exist any non-trivial subspace V., such that
imgVig @ Veg = Oyy. Hence, imgVig = Oyy.

(3): Since Vg € R* ", from Statement (1) and Statement
(2) of this theorem, it follows that dim(O,g) = n,. O

4. APPLICATION TO THE HAMILTONIAN SYSTEM
ARISING FROM THE SINGULAR LQR PROBLEM

In this section, we apply the results developed in Section
3 to a special system, namely the Hamiltonian System
arising from the linear quadratic regulator (LQR) problem
(Problem 1). Recall that, the LQR problem is called a
regular LQR problem when R is non-singular, and it is
called a singular LQR problem when R is singular. Since,
R > 0, there exists an orthogonal U € R™ ™ such that
rqy ~ 00
U'RU 0 Rl
If we define BU =: [B: Bz] and SU =: [$1 S2], where
Bs, Sy € R*™* then we have that S; = 0 (see (Bhawal
et al., 2019a, Lemma 1)). Hence, without loss of generality,
any singular LQR problem can be written as:

Problem 14. Consider the stabilizable system given by

where A € R**® B, € R**®=1) and B, € R***. Then,
for every initial condition z(0) = x¢, find an input u(t) :=

Ul (t)
|:u2(t)

where R € R*™** and r := rankR.

] that minimizes the functional

s [2(t)]7 [Q 082] 1a(t)
J(@oru) = / w()| |0 00| un(t)|dt, (26)
0 lus(t)] [ST 0 R| Lu2(?)
with lim z(t) = 0, Q € RV S, € R2T R € RTxT,
Q 05> ~
[ 00 Q] >0, and R > 0.
ST 0R
Q 0583
A Cholesky factorization of the cost matrix [SOT 0 }%}
To

gives us an auxiliary output equation for the system
defined in equation (25). We call this system, the primal for
the LQR Problem 14. The following is the formal definition
of the primal system for Problem 14.

Definition 15. Consider the LQR Problem 14. Let

QOSQ CT
|:009\:|:|:0T:|[C'0D2]’ (27)

sfoRr D,
Q 08,
where C' € RP*® Dy, € RP*™ and p := rank[ 00 Q}.
ST 0R

Define the system 3, : £a(t) = Ax(t)+Biu (t)+ Bous(t)
and y(t) = Cx(t) + Daus(t). We call the system X, the
primal for the LQR Problem 14.

As mentioned before, another important system arising
from an LQR problem is the Hamiltonian system. We
obtain this system using Pontryagin’s maximum principle
(PMP) to Problem 141!:

A 0 B; B

pouna ey [ et s
06100 % up | = 0 B;T 0 0 uy | o (28)
U ~ U
<0000, : sT BT o R :
E

H

where E € Re+tmx(+m) jg partitioned conforming to the
partition in H. [%] is called the state-costate pair. It fol-
lows from Pontryagin’s maximum principle that if (z*, u*)
is an optimal trajectory of the primal X,., then there
exists z* such that (z*, 2*,u*) belongs to the Hamiltonian

system. Hence, the trajectories of the Hamiltonian system

are of special interest. Recall that, Ris non-singular, and
hence us can be eliminated from equation (28) to obtain

LOo01dr = A -A. B x
{oho}d[;’]Z[c}KTo][uZ], (29)
00o0JdtLlwn o BT o 1

E. S————

H;

where A := A — Bg§*15§7 @ =Q — Sgﬁ’ng, A, =
BgR‘lBQT, and B := Bj. This system is called the reduced
Q 05
Hamiltonian system. Since [ 9.0 9\} > 0, by the notion of
sToR
Schur complement it is evident that Q = Q — SoR™1S3 >
0. Throughout this paper, we assume that det(sE, —
H,) # 0. Notice that the reduced Hamiltonian system
admits an output-nulling representation, Yy., given by
d A — Y ~, T
1] A T4 121+ [ B] w and 0=[0 3] [2].(30)
dt -Q —-A 0 N——
~—~
A, B, Cx

It turns out that the good slow space of ¥y, is pivotal in
solving the LQR Problem 14 (see Bhawal et al. (2019b),
Bhawal et al. (2019b)). Thus, in this section we compute
the good slow space of Ypay. Clearly, (Ey, Hy) as defined
in equation (29) is the Rosenbrock matrix pair of Ygay.

Say, A := o(Ey,H,) NC_, ng := |A|, V1, Vo € R**® and
V3 € R@=1)X0: he guch that the columns of the matrix
\%
Ve = V;
V3
eigenspace of (Ey, Hy), i.e.,

A -A: B [wn I, 00
—-Q —-AT 0 Va Z[OIHO
~ V3 000
—_——

form a basis for the ng-dimensional stable

o BT o

H, Ve Ex

where J € R**" g(J) = A. Thus, we can directly apply
Lemma 13 to infer that the good slow space Oy of Ygan
is given by O, = img [5;] How the subspace O,4 can

be used to solve the regular LQR problem is well-known
in the literature (see (Ionescu et al., 1999, Chapter 5)).

I Tt should ne noted that if the system starts from an arbitrary initial
condition, then the optimal control for the singular LQR problem is
impulsive in nature and hence PMP becomes inapplicable there. But,
in this paper we deal with the initial conditions for which the system
admits only smooth optimal trajectories. Hence, we may apply PMP
here. However, in order to solve the problem for an arbitrary initial
condition the system given by equation (28) is crucial even though
PMP is not applicable (Bhawal et al. (2019b), Bhawal and Pal
(2019)).



In Bhawal and Pal (2019) O, has been used to solve the
singular LQR problem for the single-input case. How to
use this subspace to solve the singular LQR problem for
the multi-input case is a matter of our future research.

Next, we divide this section in two parts to explore some
interesting properties of O,,. We first show a relation
between the good slow space (V) of the primal ¥, and
the subspace O,4. In the second part, we show that the
subspace imgV, is disconjugate (see Definition 18).

4.1 Relation between the spaces Vg and Oy

The following lemma is crucially used to establish a
relation between V, and O,4.

Lemma 16. Consider the LQR Problem 14 and the cor-
responding primal ¥,, as defined in Definition 15. Fur-

ther define the system Lguz jt (t) = Az(t) + Bu(t),
y(t) = C’x( ), where A, B are as defined in equation (29)

and C := C — DyR~ 18T, Let V, and W, be the good slow
spaces of ¥, and Xy, respectlvely Then Vg = W;.

Proof. We prove this lemma in two steps. First we show
that W, C Vg, and then we show that V,; C W,.

(Wy C Vy): Say dim(W,) =: g1 and W, € R**& be such
that W, = imgW,. Clearly, there exist F' € R®=1)*2 and
J1 € R&*8& guch that (A+BF)W W, Jy and CW =0,
where o(J1) C C_. Hence, from definition of _ A, Band C,
it immediately follows that (A + B1 F — ByR 152 W,

Wyt = (A+ 5 8a] | 55 Wy = Wyi. Also, (C —
DRTISIW, = 0 = (C+ [on:] | _phigr W, = 0.
Consequently, W, C V.

(Vg € Wy): Say, dim(V,) =: go and V; € R**& be such
that V, = imgV,. Thus, there exist F; € RE-D)x2 B, ¢
Rr>®, and Jo € R&%82 guch that

(A+[B1 B2 ][ 12 ) V=V, J2 and (C+[o0 D2 ][ 1 ])V,=0,(32)
where o(J2) € C_. Now, (C’—l—[ODz][%])Vq =0=
Dy V, = —CV, = DY D2F2V = —DICV,. Notice, from
equation (27), that DI Dy = R and CTDy = S,. Thus, we
have

BV, = -R1S5TV, (33)

Next, using equation (33) in equation (32), we get (A +
BFy)Vy, = VyJy and CV; = 0. Thus, V; € W,. Hence, we
finally conclude that V, = W,. O

Next, we state and prove the lemma which establishes a
relation between V, and O,,.

Lemma 17. Let Vg and O,,4 be the good slow spaces of the
primal ¥, (defined in Definition 15) and the Hamiltonian

system Y., (defined by equation (30)), respectively. De-
fine the subspace

Vettan := {[06]
Then, Vetan € Ouwyg-

ER™ |veV,}.

Proof. Let g := diml, and V;, € R**& be such that
V, = imgVj. Thus usmg Lemma 16, we infer that there

exists F € R~ r)xn such that

(A+ BF)V, = V,J, and CV, = 0, (34)

where o(Jy) € C_. Also, since C = C — DyR8T it is

easy to verify that CTC = @ Hence, defining V3, := F'V,
we have the following:

A —A. Bl [V,1 [Lo0O0][V,
—Q —AT 0| |Ong| =10 L O] [Ong| Jy
o BT of Vsl Lo oofLvs
v, v
A; B, Ing 0] |9
or, [o 0] (‘)/ - {3 0} Oug| Jpr  (35)
39 39

where A;, By, and C; are as defined in equation (30). From
equation (35), it is clear that A, [ } + By Vg = (Ar +

By [F 0a-na]) [0‘:1] = [O,{ﬂ Jg; and Cy [On,g] = 0. Thus,

from Definition 11, it is evident that img [OV} C Ouy.

But, notice that img [O‘E’J = Vgtan- Hence, Vgan € Oyyg. O

4.2 Disconjugacy of imgV,

In this section, we show that the subspace imgV, (defined
in equation (31)) is disconjugate. We present the definition
of disconjugacy next.

Definition 18. Let W be an eigenspace of the matrix pair
(Ey, Hy) as defined in equation (29). Assume that the
columns of the matrix W form a basis for the eigenspace
W. Further, conforming to the partition in H, say W be

w
partitioned as {%;} Then, W is said to be disconjugate
3

if Wy is full column-rank.

From the definition of disconjugacy, it is clear that dis-
conjugacy of imgV, is equivalent to V; (defined in equa-
tion (31)) being full column-rank. We show at the end
of this section that if the system starts from an initial
condition from imgVj, then the singular LQR problem can
be solved using a smooth input. Thus, disconjugacy of
imgV, provides us with the basis and dimension of the
subspace of the state-space for which the problem can
be solved using smooth input if the system starts from
that subspace. Disconjugacy of imgV, also enables us to
provide a feedback law if the initial condition is from imgV}
(Theorem 22). To prove that Vj is full column-rank, we
need two auxiliary results. We present these results one
by one. The first auxiliary result is a well-known result
about the left- and right-eigenspaces of the Hamiltonian
matrix pair (Ey, Hy) (Ionescu et al. (1999)). For the sake
of easy referencing, we present this as a proposition next.
Proposition 19. Let the columns of the matrix V, =
col(V1, Vo, V3) form a basis for the eigenspace of the
matrix pair (Fy, Hy) corresponding to the eigenvalues in
A, where (E., H;) is as defined in equation (29), and
A :=0(E;, H;)NC_. Then the following statements hold:

(1) Rows of the matrix [vy7 —viT vif | form a basis for the
left-eigenspace of (Ey, Hy) corresponding to eigenval-
ues in —A. (Note: A € —A & —X € A)

( ) VTV2 - VTV1

Next, recall from Lemma 17 that 1mg[ ] C Ouyy- Thus,

there exist Vig, Vay € R2*(®—8)  where ng := dim(Oyyg),

such that O,y = img {‘6‘7 “22} . We use this fact in the
following lemma which plays a pivotal role in proving the

disconjugacy of the subspace imgVs.



Lemma 20. Let Vig, Vg € R2X(=8) he such that Owg =

img {‘69 “22] , where ng := dim(Oyy), g := dim(Vg), V; €

R**€ and imgVj; = V,;. Then, the following are true:

(1) Vag is full column-rank.
(2) VZEVU > 0.
(3) [V Viz2] is full column-rank.

Proof. (1): Since img [‘69 22} = Oyyg, by Definition 11,
there exist F, € R@o)x2 [, c RexX@:8) and Ty, €
R (s —8)x(2:—8) guch that

Via| | Vg Via||T12 Via|
(Ar—|—BrFe)[V22]—[ 0 V22] {rm] , and Crl:‘/22:| =0,(36)

where A;, By, and C; are as defined in equation (30).
Define V3o := F, [%3] Then, combining equation (35)
and equation (36), we get

A —A, B Vg Vi I, 0O Vg Via

,6 ,XT 0 |:0n‘g V22:|=|: 0 I, O:||:0n,g V22:||:{)g ?12:| . (37)

0 §T 0 Vgg V32 000 22

Now, since img [0‘:1 KZ} = Oy, it is evident that o(Js) C

C_, which, in turn, implies that o(I'33) C C_. Next, from
equation (37), we get

AVig — A, Vag + BViy = Vgl'12 + Vial'ao, (38)

—QViz — ATVay = Viol'po, (39)

BTVay = 0. (40)
Vy Vi

Clearly, img [On,g sz] is an eigenspace of the Hamil-
Vzg Va2

tonian matrix pair (Fy, Hy). Thus, from Statement 2
of Proposition 19, it follows that [Vs Viz]” [0ug Vao] =
[Ong Vo2 ]T [Ve Viz], which further implies that
‘/QEVQ =0 and ‘/22‘/12 = V1€V22. (41)
Next, we pre-multiply equation (38) by V45 and equation
(39) by —V/%, and then add them together to get
Vs AVig — Vi A Vas + Voh BVas + Vi5QVi2 + Vi5 A Vo
= Vb Vel'12 + Vs Vialag — Vi5VaoT'as. (42)
By using equation (40) and equation (41), equation (42)
can be further reduced to obtain
Vah AViy — Vah A Voo + VEQVi2 + VEAT Vay = 0. (43)
Now, we prove Statement (1) of this lemma by contradic-
tion. Thus, we assume that V5o is not full column-rank.
So, there exists w € R®==8)%1 4 £ ( such that Vagw = 0.
Therefore, on pre- and post-multiplication of equation (43)
by w?" and w, respectively, we get w! V5QVi2w = 0. But,
since @ > 0, we have QViow = 0. Hence,

kerVse C ker@Vm. (44)

Post-multiplying equation (39) by w, we get —QVipw —
ATVaow = Vaol'gow. But, recall that Vasw = 0 and

QVisw = 0. Consequently, Vool'ssw = 0. Hence, kerVa,
is I'go-invariant.

So, there exists a full column-rank matrix 7 € R(m—g)x®
such that V22T = 0 and T'eT =TT, 0(T') C o(T'22) C C_.

Moreover, from equation (44), we have QVioT = 0. Now,

post-multiplying equation (38) by 7' and using the fact
that Voo = 0 and I'oeT =TT, we have

AVioT + BVsyT = VT'1oT + V3o TT. (45)

Recall that, CTC = Q. So, from the fact that QVi,T = 0,
it is clear that
CVioT = 0. (46)

Thus, combining equation (34), equation (45), and equa-
tion (46) together we derive that

[Z E} {Vg VlgT} B {I,, 0} {Vg V12T} {Jg ru]
C 0| |Vag Va2T'| ~ |0 O] |V3y Vao©'| [0 T |~
Since o(Jy),o(I') € C_, from Lemma 13, it follows that
img[V; Vi2T| is contained in the largest good slow space,
Wy, of the system X,up : %x = Az + Ewy = Cr. But,
from Lemma 16 we know that W, = V, = imgV}. So,
img [ Ve Vi2T | = imgV,. Thus, there exist oy € R&*! and a
non-zero oy € R**! such that

VgOél + V12TOQ =0. (47)
Recall that, Voo T' = 0. Thus, Voo T'as = 0. Combining this

with equation (47), we have {‘gg 22} [Ta,| = 0. But, T
being full column-rank and ay # 0 implies that Tas # 0.

Consequently, we have a non-zero vector [TO;] inside

Vg Via Vg Via .
ker [ 0 Voo f sz} is full

column-rank. Therefore, Voo must be full column-rank.

} . This is contradiction, because [

(2): From equation (41), we know that Vy5V;s is symmet-
ric. Now, we prove that V3,Vio > 0 in two steps. First,
we show that V5V > 0, and then we show that Vj5Vis
is non-singular. Pre-multiplying equation (38) by Vo, and
using equation (40) and equation (41), we have

Von AV — Vb A Vag = Vb ViaTgs. (48)
Also, by taking transpose of equation (39), and then post-
multiplying by Vi2, we obtain

—Vi5QVi2 = Vyy AVip = T3,V Vi, (49)
Adding equation (48) and equation (49) together, we get

—VEQVig — Vih A, Vay = VihVialag + T Vib Vis. (50)

Since, @ >0and A, = BgﬁleQT > 0, we have Vlgévlz+
V5 A, Vag > 0. Now, notice that equation (50) is a Lya-
punov equation. Recall that I'sy is Hurwitz. Thus, by
Lyapunov’s theorem, we conclude that V;5Vis > 0.

Next, to the contrary, assume that VjLVip is singular.

Then, we must have that ({‘31402}[%2} ,T'22) is unob-
servable (see (Wonham, 1985, Lemma 12.2)). Thus, there

exists a non-zero v € C®=8)*! guch that
T'y2v = Av, for some A € 0(T'y2) C C_, and

(3 9142 ]v=0 4 QVaav=0 & A.Visw=0,

(51)
Now, right-multiplying equation (39) with v and using
QV12v = 0 from equation (51), we have

ATV = (A-By R8T Vapv = —AVau. (52)
Also, A,Vaov = BoR'BIVayv = 0 & R'BI Vi =
0 < BI'Viv = 0. Combining this with equation (40), we
get vIVE [B: B.] = 0, because B = Bj. Further, using
BIVav = 0 in equation (52), we get that ATVaov =



—AVaov. From Statement (1) of this lemma, we know
that Vao is full column-rank. So, v being a non-zero
vector implies that Voov # 0. This means that Vasv is
an eigenvector of AT corresponding to the eigenvalue —\.
But, vTVE[B1 B.] = 0 and A € C_ = —\ € C,. This
contradicts the assumption that (A4, [ B1 B:]) is stabilizable
(see Problem 14). Hence, Vz5V15 is non-singular. We also
showed that V;5Via > 0. Therefore, VoL Via > 0.

(3): Say, 81 € Re&*! and B, € R(®~8)*1 he such that
[Ve Viz] [g;] = 0. Pre-multiplying this equation with Vg

and using equation (41), we have V;5Vi283, = 0. But, from

Statement (2) of this lemma, we know that V55 V35 is non-
singular. So, 82 = 0. This further implies that V8, = 0,
which, in turn, implies that 8; = 0, because V; is full

column-rank. Thus, [V, 2] [ 1] =0 =[] = 0. Hence,

[Vs Viz] is full column-rank.

Now, we are in a position to show that the subspace imgV,
is disconjugate. We present this result as a theorem next.
Theorem 21. Let (Ey, Hy) be the Hamiltonian matrix pair
as defined in equation (29). Also, consider the eigenspace,
imgV,, of (Ey, Hy) as define in equation (31) . Then, imgV,
is disconjugate.

Vi
Proof. Recall, from equation (31), that V, = {52}
3

Oyg. But, from the

statement of Lemma 20, we have that img [‘6‘7 “22} = Ouyg-

We also know that img[“g] =

Vg Viz
0 Voo
Now, Vi and [V, Viz| both have ng number of columns.
Furthermore, from Statement (3) of Lemma 20, we get
that [ Vy Viz] is full column-rank. Hence, we must have that
V1 is full column-rank. Therefore, imgV, is disconjugate.O

Thus, img [%] = img[ } = imglh = img|[Vy Vi2].

The following theorem renders the optimal trajectories and
a feedback law to solve Problem 14, if the initial condition
is from imgV;.

Theorem 22. Consider the singular LQR Problem 14, V7,
and J as defined in equation (31). Suppose xg = Viq,
a € R®=*! is an arbitrary initial condition from imgV;.
Then,

(1) (xs,us,,us,) is the optimal trajectory, where z, :=
VieTta, ug, = Viella, and u,, = —R(STV; +
BIVy)elta.

(2) There exist feedbacks F; € R®=9)*1 and [, € R¥*®
such that us, = Fizs and us, = Fhxs.

Proof. (1): Define zy := Voo and z, := Vae’!a. Then, us-
ing equation (31), it is easy to verify that (zs, zs, Us,, Us, )
is a trajectory for the Hamiltonian system defined by equa-
tion (28) corresponding to the initial condition (xg, o). It
can also be verified that (zs,us,,us,) is a trajectory for

the system %x = Ax + Biui + Baug corresponding to
the initial condition x. Hence, from Pontryagin’s maxi-
mum principle it follows that (xg, us,,us,) is the optimal

trajectory corresponding to the initial condition xg.

(2): From Theorem 21, it follows that V4 is full column-

rank. Thus, there exist K3 € R®0xn and K, ¢ Rexe
such that V3 = K1V; and Vo, = Ky V;. Define F} (= K,

and Fy := —R~Y(ST + BT K,). Then, it is evident that
us, = Fizs and ug, = Fox,. This completes the proof. O

5. CONCLUSION

In this paper we have provided a characterization of the
slow and the good slow spaces. This characterization auto-
matically gives a method to compute these subspaces from
an eigenspace of the corresponding Rosenbrock system
matrix. Furthermore, we have shown how to obtain the
dimensions of these subspaces from the degree of the de-
terminant of the Rosenbrock matrix pencil. Then, we have
applied these results to the Hamiltonian system obtained
from the singular LQR problem to explore some interesting
properties. In this paper we have used the good slow space
of the Hamiltonian to provide a feedback which solves the
singular LQR problem when the initial condition of the
system belong to a certain subspace. This space has been
used in Bhawal and Pal (2019) to solve the singular LQR
problem for any arbitrary initial condition for the single-
input case. We wish to use the results developed in this
paper to solve the problem for the multi-input case.
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