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Abstract: In this paper we first characterize the slow space (see Definition 9) of a given state-
space system. We provide this characterization in terms of an eigenspace of the corresponding
Rosenbrock matrix pair. We also characterize the “good” slow space (see Definition 11) in terms
of a stable eigenspace of the Rosenbrock matrix pair. Moreover, we show how the dimensions of
these subspaces can be calculated from the determinant of the Rosenbrock matrix pencil. Then,
we apply these results to the Hamiltonian system arising from the singular linear quadratic
regulator (LQR) problem and explore a few interesting properties of the good slow space of this
Hamiltonian system. Finally, we provide a feedback law to achieve the smooth optimal solutions.
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1. INTRODUCTION

Singular LQR problem is one of the classical problems
in systems and control theory (Francis (1979), Hautus
and Silverman (1983), Willems et al. (1986)). This prob-
lem is still an area of active research (Kalaimani et al.
(2013), Reis et al. (2015), Ferrante and Ntogramatzidis
(2018),Bhawal and Pal (2019)). The following is the formal
statement of the infinite-horizon LQR problem:

Problem 1. Consider the stabilizable system defined by
d
dtx(t) = Ax(t) + Bu(t), where A ∈ Rn×n and B ∈ Rn×m.
Then, for every initial condition x(0) = x0, find an input
u(t) that minimizes the functional

J(x0, u) :=

∫ ∞
0

[
x(t)
u(t)

]T [
Q S
ST R

] [
x(t)
u(t)

]
dt, (1)

with lim
t→∞

x(t) = 0, where Q ∈ Rn×n, S ∈ Rn×m, R ∈ Rm×m,

such that
[
Q S

ST R

]
> 0.

Problem 1 is called a regular LQR problem if R > 0, and a
singular LQR problem if R > 0 with R being singular. It is
well-known in the literature that the regular LQR problem
admits an algebraic Riccati equation (ARE) given as:

ATK +KA+Q− (KB + S)R−1(BTK + ST ) = 0. (2)

If Kmax is the maximal solution of equation (2), that is,
Kmax − K > 0 for any other solution K of the ARE,
then the LQR Problem 1 can be solved by using the
feedback law u = Fx, where F := −R−1(BTKmax + ST ).
Notice from equation (2) that the existence of an ARE
crucially depends on the invertibility of R. Naturally,
a singular LQR problem does not admit an ARE and
consequently can not be solved using the feedback law as
mentioned before. Hautus and Silverman (1983) deals with
the solution of the singular LQR problem, but a feedback
solution for the problem has not been provided there.
In Reis et al. (2015), the notion of deflating subspaces
has been used to provide a linear implicit control law

which, unfortunately, often turns out to be not feedback
implementable. The theory presented in Reis et al. (2015)
assumes that the state and the input of the system are
from the space of locally square-integrable functions. This
assumption prevents the presence of impulses in the input
and the states. Reis et al. (2015) also imposes a restriction
on the initial condition of the system. Such a restriction
on the initial condition is not desirable, because an initial
condition of a system should ideally be free. For single-
input systems, Bhawal and Pal (2019) provides a solution
for any arbitrary initial condition. They also provide a
PD feedback law for the optimal solution. Since the initial
condition is free, the optimal trajectories corresponding to
certain initial conditions are impulsive in nature. Hence,
the function space assumed in Bhawal and Pal (2019)
allows impulses in the input and the states. This solution
is based on the notion of the slow subspace and the
fast subspace of the Hamiltonian system arising from the
singular LQR problem (Bhawal et al. (2019b)). We wish
to extend the result based on the notion of slow and fast
subspaces of the Hamiltonian system to the case of multi-
input systems in our future research. Therefore, in this
paper we characterize the slow space of the Hamiltonian
system in terms of an eigenspace of the Hamiltonian
matrix pencil. We also provide a static feedback law for
the smooth optimal solutions.

We characterize the slow space of the Hamiltonian system
in two steps. First, we characterize the slow space and
the good slow space for the system Σ : d

dtx = Ax + Bu,

y = Cx + Du, where A ∈ Rn×n, B, CT ∈ Rn×m, D ∈ Rp×p.
In Hautus and Silverman (1983), it has been shown that
the slow space is the largest subspace V for which there
exists F ∈ Rm×n such that (A + BF )V ⊆ V and (C +
DF )V = 0. The good slow space is the largest such
subspace with an additional condition that (A+BF )|V is
Hurwitz. In this paper, we give an explicit characterization
of the slow and the good slow spaces of the system, for the
case when p = m (for a Hamiltonian system, this condition



is always satisfied), in terms of an eigenspace and a stable
eigenspace of the corresponding Rosenbrock matrix pair
(
[
In 0
0 0

]
, [A B
C D ]), respectively. We also show how to obtain

the dimension of these spaces from the determinant of the
Rosenbrock matrix pencil. Then, we apply these results
to the Hamiltonian system to obtain its good slow space.
We also show how the good slow spaces of the primal (see
Definition 15) and the Hamiltonian are related.

The results presented in this paper are extensions of a few
results presented in Bhawal et al. (2019b). In Bhawal et al.
(2019b) the results have been proved for the single-input
case only, whereas in this paper we provide the proofs
for the multi-input case. Furthermore, in Bhawal et al.
(2019b) the matrix D in the output equation of the system
Σ has been assumed to be zero. But, in this paper we have
not made such an assumption. Also, for the single-input
case of the singular LQR problem R = 0, but in the multi-
input case R is not-necessarily zero. Hence, the structure of
the Hamiltonian system corresponding to the multi-input
case is significantly different from that of the single-input
case. These issues make the extension nontrivial.

The organization of the paper is as follows: In Section
2 we provide the notation used in this paper and dis-
cuss the necessary preliminaries. Section 3 deals with the
characterization of the slow and the good slow spaces.
Then, we apply these results to the Hamiltonian system
corresponding to the singular LQR problem in Section 4.
We conclude in Section 5 with some possible direction for
future work.

2. NOTATION AND PRELIMINARIES

We first present the various notation used throughout this
paper, then we discuss a few preliminaries required for the
development of the theory presented in this paper.

2.1 Notation
The symbols R, C, and N are used for the sets of real
numbers, complex numbers, and natural numbers, respec-
tively. R+ denotes the set of non-negative real numbers.
We use the symbols C+ and C− for the closed right-half
and the open left-half of the complex plane, respectively.
The symbol Rn×p denotes the set of n × p matrices with
elements from R. We use • when a dimension need not
be specified: for example, Rw×• denotes the set of real
constant matrices having w rows. We use the symbol In for
an n× n identity matrix and the symbol 0n,m for an n× m
matrix with all entries zero. Symbol col(B1, B2,. . . ,Bn)

represents a matrix of the form [BT
1 BT

2 · · · BT
n ]
T

. The sym-
bol det(A) represents the determinant of a square matrix
A. Symbol rankA denotes the rank of a matrix A. We use
the symbol roots(p(s)) to denote the set of roots (over
C) of a polynomial p(s) with real or complex coefficients
(counted with multiplicity). The symbol deg(p(s)) is used
to denote the degree of the polynomial p(s). The symbol
σ(Γ) denotes the set of eigenvalues of a square matrix Γ
(counted with multiplicity). The symbol |Γ| denotes the
cardinality of a set Γ (counted with multiplicity). We use
the symbols A|S to denote the restriction of a matrix A
to a subspace S (with respect to a suitable basis) and
σ(A|S) to represent the set of eigenvalues of A restricted
to the subspace S. We use the symbol dim (S) to denote
the dimension of a space S. The symbol imgA and kerA
denote the image and nullspace of a matrix A, respectively.
The space of all infinitely differentiable functions from R to
Rn is represented by the symbol C∞ (R,Rn). The symbol
C∞ (R,Rn) |R+ represents the set of all functions from R+

to Rn that are restrictions of C∞ (R,Rn) functions to R+.

2.2 Regular matrix pencils and their canonical form

Linear matrix pencils and their eigenvectors are crucially
used throughout this paper. Hence, we define eigenvalues
and eigenvectors of a linear matrix pencil next.

Definition 2. Consider a regular matrix pencil (sU1 −
U2) ∈ R[s]n×n, i.e., det(sU1 − U2) 6= 0. Let λ ∈
roots (det(sU1 − U2)). Then λ is called an eigenvalue of
(U1, U2) and every nonzero vector v ∈ ker (λU1 − U2)
is called an eigenvector of the matrix pair (U1, U2) cor-
responding to the eigenvalue λ. Further, every nonzero

vector ṽ ∈ ker (λU1 − U2)
i
, where i ∈ {2, 3, . . .}, is called

a generalized eigenvector of the matrix pair (U1, U2) cor-
responding to the eigenvalue λ.

We use the symbol σ(U1, U2) to denote the set of eigenval-
ues of (U1, U2) (with λ ∈ σ(U1, U2) included in the set as
many times as its algebraic multiplicity).

In this paper, we extensively use one of the canonical
forms of a linear matrix pencil (see Dai (1989) for more on
different canonical forms). We review the result that leads
to such a canonical form next (Dai, 1989, Lemma 1-2.2).

Proposition 3. A matrix pair (U1, U2) is regular, i.e.,
det(sU1 − U2) 6= 0 if and only if there exist nonsingular
matrices Z1 and Z2 such that Z1U1Z2 = diag(In1 , N) and
Z1U2Z2 = diag(U, In2), where n1 + n2 = n, U ∈ Rn1×n1 ,
and N ∈ Rn2×n2 is nilpotent.

A matrix pair (U1, U2) in the form
([

In1 0

0 N

]
,
[
U 0
0 In2

])
is said to be in a canonical form. Further, note that
det(sU1−U2) = k×det(sIn1−U), where k ∈ R\{0}. The
following two lemmas provide some important properties
related to the generalized eigenspaces of a matrix pair.

Lemma 4. Consider the matrix pair
([

In1 0

0 N

]
,
[
U 0
0 In2

])
,

where U ∈ Rn1×n1 , and N ∈ Rn2×n2 is nilpotent. Let

W̃1 ∈ Rn1×k, W̃2 ∈ Rn2×k, and Γ̃ ∈ Rk×k be such that[
U 0
0 In2

] [
W̃1

W̃2

]
=
[
In1 0

0 N

] [
W̃1

W̃2

]
Γ̃. (3)

Then, W̃2 = 0.

Proof. From equation (3), we get W̃2 = NW̃2Γ̃. Now, if

we keep substituting W̃2 = NW̃2Γ̃ on the right-hand side

of the equation, then clearly we have W̃2 = N iW̃2Γ̃i for all

i ∈ N . But, N is a nilpotent matrix. Therefore. W̃2 = 0.2

Lemma 5. Let the matrix pair (U1, U2) with U1, U2 ∈
Rn×n be such that degdet(sU1 − U2) =: n1 6= 0. Then,

(1) There exist a full column-rank matrix W ∈ Rn×n1 and
Γ ∈ Rn1×n1 with det(sIn1 − Γ) = det(sU1 −U2) such
that U2W = U1WΓ.

(2) There exist T1, T2 ∈ Rn×n non-singular such that
T1U1T2 = diag(In1 , N) and T1U2T2 = diag(Γ, In2),
where n1 + n2 = n and N ∈ Rn2×n2 is nilpotent.

Proof. (1): According to Proposition 3, there exist
Z1, Z2∈Rn×n non-singular such that Z1U1Z2 =diag(In1,N)
and Z1U2Z2 = diag(U, In2), where U ∈ Rn1×n1 , det(sIn1−
U) = det(sU1 − U2) , and N ∈ Rn2×n2 is nilpotent.
Evidently, if a matrix Γ ∈ Rn1×n1 is similar to the
matrix U , then there exists W1 ∈ Rn1×n1 non-singular

such that UW1 = W1Γ. Then, clearly,
[
U 0
0 In2

] [
W1
0

]
=[

In1 0

0 N

] [
W1
0

]
Γ holds. Consequently, the equation U2W =

U1WΓ is satisfied, where W := Z−1
2

[
W1
0

]
. Since W1 ∈



Rn1×n1 is non-singular, we must have that W ∈ Rn×n1 is
full-column-rank. Also, det(sIn1 − Γ) = det(sIn1 − U) =
det(sU1−U2). This completes the proof of Statement (1).
(2): From the proof of Statement (1) we have W−1

1 UW1 =

Γ. Define T̃ :=diag(W1, In2), T1 :=T̃−1Z1, and T2 :=Z2T̃ .
It is evident that T1 and T2 are non-singular. Further,
it is easy to verify that T1U1T2 = diag(In1 , N) and
T1U2T2 = diag(Γ, In2). 2

2.3 (A,B)-invariant subspace

Notion of (A,B)-invariance is pivotal for the theory devel-
oped in this paper. Thus, we present the formal definition
of (A,B)-invariance next.

Definition 6. Consider A ∈ Rn×n and B ∈ Rn×m. A
subspace V ⊆ Rn is said to be (A,B)-invariant if there
exists F ∈ Rm×n such that (A+BF )V ⊆ V.

The following Proposition (see (Wonham, 1985, Lemma
4.2)) provides us with a method to determine whether a
given subspace is (A,B)-invariant.

Proposition 7. A subspace V ⊆ Rn is (A,B)-invariant if
and only if AV ⊆ V + imgB.

Corresponding to an (A,B)-invariant subspace V, we de-
fine the set

F(V) := {F ∈ Rm×n | (A+BF )V ⊆ V}.
Suppose V is an (A,B)-invariant subspace, and assume
that S ⊆ V is an (A,B)-invariant subspace as well. Then,
the following Proposition from (Wonham, 1985, Lemma
5.7) shows a relation between F(S) and F(V).

Proposition 8. Assume that V and S are (A,B)-invariant
subspaces such that S ⊆ V. If F0 ∈ F(S), then there exists
F ∈ F(V) ∩ F(S) such that F |S = F0|S .

2.4 The slow subspace

Definition 9. Consider the system d
dtx(t) = Ax(t)+Bu(t),

y(t) = Cx(t) + Du(t). A state x0 ∈ Rn is called weakly
unobservable if there exists an input u ∈ C∞ (R,Rm) |R+

such that y(t;x0, u) ≡ 0 for all t > 0, where y(t;x0, u)
is the output of the system corresponding to the initial
condition x0 and the input u(t). The collection of all such
weakly unobservable states is called the weakly unobserv-
able subspace or the slow space of the state-space and is
denoted by Ow.

The following property of the slow space is crucially used
in this paper (see (Hautus and Silverman, 1983, Theorem
3.10)).

Proposition 10. The slow space Ow is the largest subspace
V of the state-space for which there exists a feedback
F ∈ Rm×n such that

(A+BF )V ⊆ V and (C +DF )V = 0. (4)

In other words, if V is any subspace that satisfies equa-
tion(4), then V ⊆ Ow.

An important subspace of the slow space,Ow is the “good”
slow space Owg. We formally define this subspace next.

Definition 11. The good slow space Owg is the largest
subspace V of the state-space for which there exists a
feedback F ∈ Rm×n such that

(A+BF )V ⊆ V, (C +DF )V = 0,

and σ((A+BF )|V) ⊆ C−. (5)

In other words, if V is any subspace that satisfies equation
(5), then V ⊆ Owg.

3. CHARACTERIZATION OF THE SLOW SPACE

Consider the system Σ given by the input-state-output
representation

d

dt
x(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (6)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈
Rm×m.Corresponding to this system, we define the matrices

U1 :=

[
In 0
0 0

]
∈ R(n+m)×(n+m) and U2 :=

[
A B
C D

]
. (7)

The pair (U1, U2) is called the Rosenbrock matrix pair and
the matrix (sU1 − U2) is the Rosenbrock matrix pencil
corresponding to the system Σ. Throughout this paper we
assume that the matrix pencil (sU1 − U2) is regular, i.e.,
det(sU1 − U2) 6= 0.
We present this section in two parts. In the first part, we
characterize the slow space of Σ, and in the second part
we characterize the good slow space of Σ.

3.1 Characterization of the slow space in terms of an
eigenspace of the Rosenbrock matrix pair

In the following theorem we characterize the slow space,
Ow, of the system Σ in terms of the generalized eigenspace
of the Rosenbrock matrix pair (U1, U2). This theorem also
provides us with the dimension of the subspace Ow.

Theorem 12. Consider the system Σ defined in equation
(6) and the corresponding Rosenbrock matrix pair (U1, U2)
as defined in equation (7). Assume that det(sU1−U2) 6= 0
and degdet(sU1 − U2) =: ns. Let V1 ∈ Rn×ns and V2 ∈
Rm×ns be such that col(V1, V2) is full column-rank and[

A B
C D

]
︸ ︷︷ ︸

U2

[
V1

V2

]
=

[
In 0
0 0

]
︸ ︷︷ ︸
U1

[
V1

V2

]
J, (8)

where J ∈ Rns×ns and det(sIns − J) = det(sU1 − U2).
(Such V1, V2, and J exist due to Lemma 5.) Let Ow be the
slow space of Σ. Then, the following statements hold:

(1) V1 is full column-rank.
(2) Ow = imgV1.
(3) dim(Ow) = ns.

Proof. (1): To the contrary assume that V1 is not full
column-rank. Then, there exists a non-singular matrix T ∈
Rns×ns such that

[
V1

V2

]
T =

[
V11 0
V21 V22

]
, where V11 ∈ Rn×n1 ,

n1 := rankV1, and V22 ∈ Rm×(ns−n1). Define Ĵ := T−1JT .
So, from equation (8) it follows that[

A B
C D

] [
V11 0
V21 V22

]
=

[
In 0
0 0

] [
V11 0
V21 V22

] [
Ĵ11 Ĵ12

Ĵ21 Ĵ22

]
︸ ︷︷ ︸

Ĵ

, (9)

where the partition in Ĵ conforms to the partition in[
V11 0
V21 V22

]
. Equation (9) can equivalently be written as

AV11 +BV21 = V11Ĵ11, BV22 = V11Ĵ12,

CV11 +DV21 = 0, and DV22 = 0. (10)

From equation (10) it is clear that the Ĵ21 and Ĵ22 blocks

in Ĵ are free; in particular, Ĵ21 = 0 ∈ R(ns−n1)×n1 and

Ĵ22 = 0 ∈ R(ns−n1)×(ns−n1) also satisfy equation (9). In that

case 0 ∈ σ(Ĵ). This is a contradiction, because Ĵ = T−1JT



and thus det(sIns − Ĵ) = det(sIns − J) = det(sU1 −
U2). But, we have assumed that det(sU1 − U2) 6= 0. So,

det(sIns − Ĵ) 6= 0. Hence, 0 /∈ σ(Ĵ). This implies that our
assumption that V1 is not full column-rank cannot be true.
Hence, V1 is full column-rank.

(2): From Statement (1) of this theorem we get that V1 is
full column-rank. Thus, there exists F ∈ Rm×n such that
V2 = FV1. So, equation (8) can also be written as

(A+BF )V1 = V1J and (C +DF )V1 = 0. (11)

From equation (11) and Proposition 10 it follows that
imgV1 ⊆ Ow. Next, we prove that imgV1 = Ow. To the
contrary assume that imgV1 6= Ow. Thus, there exists a
non-trivial subspace Ve such that imgV1⊕Ve = Ow. Define
` := dimVe and let Ve ∈ Rn×` be full column-rank such that
imgVe = Ve. Now, from Proposition 8 and Proposition
10 it is evident that there exists Fe ∈ Rm×n such that
Fe|imgV1

= F |imgV1
and

(A+BFe)Ow ⊆ Ow and (C +DFe)Ow = 0. (12)

Thus, from equation (11) it follows that

(A+BFe)V1 = V1J and (C +DFe)V1 = 0. (13)

Also, since imgVe ⊆ Ow, from equation (12) it is clear that
there exist T1 ∈ Rns×` and Te ∈ R`×` such that

(A+BFe)Ve = [V1 Ve]

[
T1

Te

]
and (C +DFe)Ve = 0. (14)

Recall that Fe|imgV1
=F |imgV1

. Thus, FeV1 =FV1 =V2. So,
combining equation(12) and equation(14) together, we get[

A B
C D

] [
V1 Ve
V2 V2e

]
=

[
In 0
0 0

] [
V1 Ve
V2 V2e

] [
J T1

0 Te

]
, (15)

where V2e := FeVe. Considering the fact that degdet(sU1−
U2) = ns, from Statement (2) of Lemma 5, it is clear that
there exist nonsingular matrices Y,Z ∈ R(n+m)×(n+m) such
that

U1 = Y
[
Ins 0
0 N

]
Z and U2 = Y [ J 0

0 I ]Z, (16)

where N ∈ R(n+m−ns)×(n+m−ns) is a nilpotent matrix. Thus,
using equation (16) in equation (15) we further get that

Y [ J 0
0 I ]Z

[
V1 Ve

V2 V2e

]
= Y

[
Ins 0
0 N

]
Z
[
V1 Ve

V2 V2e

] [
J T1

0 Te

]
or, [ J 0

0 I ]Z
[
V1 Ve

V2 V2e

]
=
[
Ins 0
0 N

]
Z
[
V1 Ve

V2 V2e

] [
J T1

0 Te

]
. (17)

Define Z
[
V1

V2

]
=:
[
V̂1

V̂2

]
and Z

[
Ve

V2e

]
=:
[
V̂e

V̂2e

]
, where V̂1 ∈

Rns×ns and V̂e ∈ Rns×`. We rewrite equation (17) as[
J 0
0 I

] [
V̂1 V̂e
V̂2 V̂2e

]
=

[
Ins 0
0 N

] [
V̂1 V̂e
V̂2 V̂2e

] [
J T1

0 Te

]
. (18)

Thus, from Lemma 4, we have
[
V̂2 V̂2e

]
= 0. Since Z is

non-singular, rank
[
V̂1

V̂2

]
=rank

[
V̂1
0

]
=rank

[
V1

V2

]
=ns. Thus,

V̂1 is non-singular, which further implies that imgV̂e ⊆
imgV̂1. As a consequence

img
[
V̂e

V̂2e

]
=img

[
V̂e

0

]
⊆ img

[
V̂1
0

]
⇒img

[
Ve

V2e

]
⊆img

[
V1

V2

]
.

Therefore imgVe ⊆ imgV1. This is a contradiction. There-
fore there does not exist any nontrivial subspace Ve such
that imgV1 ⊕ Ve = Ow. This, again, is a contradiction to
the assumption that imgV1 6= Ow. Hence, Ow = imgV1.

(3): Since rankV1 = ns, from Statement (2) of this theorem
it directly follows that dim(Ow) = ns. 2

3.2 Characterization of the good slow space in terms of a
stable eigenspace of the Rosenbrock matrix pair

In this section we characterize the good slow space of the
state-space system Σ given by equation (6). Notice that,
we can partition σ(J) as σ(J) = σg(J) ∪ σb(J), where

σg(J) ⊆ C− and σb(J) ⊆ C+. Define ng := |σg(J)|.
Clearly, there exists a non-singular matrix T ∈ Rns×ns

such that T−1JT =

[
Jg 0
0 Jb

]
, where Jg ∈ Rng×ng , Jb ∈

R(ns−ng)×(ns−ng), σ(Jg) = σg(J), and σ(Jb) = σb(J). Define[
V1

V2

]
T =:

[
V1g V1b

V2g V2b

]
, (19)

where V1g ∈ Rn×ng and V2b ∈ Rm×(ns−ng). So, from equation
(8) it follows that[

A B
C D

] [
V1

V2

]
T =

[
In 0
0 0

] [
V1

V2

]
TT−1JT

or,

[
A B
C D

] [
V1g V1b

V2g V2b

]
=

[
In 0
0 0

] [
V1g V1b

V2g V2b

] [
Jg 0
0 Jb

]
. (20)

In the following lemma we show that the good slow space,
Owg of Σ is given by the subspace imgV1g.

Lemma 13. Consider the system Σ and the corresponding
Rosenbrock matrix pair (U1, U2) as defined in equation
(6) and equation (7), respectively. Assume that det(sU1−
U2) 6= 0. Consider the matrix V1g ∈ Rn×ng as defined
in equation (19) and ng = |σg(J)|. Then, the following
statements hold:

(1) V1g is full column-rank.
(2) Owg = imgV1g.
(3) dim(Owg) = ng.

Proof. (1): From Statement (1) of Theorem 12, we know
that V1 is full column-rank. Now, since T is non-singular,
it is evident that V1T = [V1g V1b] is full column-rank.
Consequently, V1g is full column-rank.

(2): Since V1g is full column-rank, there exists Fg ∈ Rm×n

such that V2g = FgV1g. Thus, from equation (20) it follows
that (A+BFg)V1g = V1gJg and (C +DFg)V1g = 0. Recall
that σ(Jg) ⊆ C−. Thus, imgV1g ⊆ Owg. Now, to the
contrary, we assume that imgV1g 6= Owg. So, there exists
a non-trivial subspace Veg such that imgV1g ⊕ Veg = Owg.
Define neg := dimVeg and let Veg ∈ Rn×neg be such that
imgVeg = Veg. Next, by Definition 11, there exists Feg ∈
Rm×n such that (A + BFeg)Owg ⊆ Owg, (C + DFeg) = 0,
σ((A+BFeg)|Owg

) ⊆ C−, and Feg|imgV1g
= Fg|imgV1g

. Thus,

there exist T1 ∈ Rng×neg and T2 ∈ Rneg×neg such that[
A B
C D

]
︸ ︷︷ ︸

U2

[
V1g Veg
V2g V2eg

]
=

[
In 0
0 0

]
︸ ︷︷ ︸
U1

[
V1g Veg
V2g V2eg

] [
Jg T1

0 T2

]
, (21)

where σ(T2) ⊆ C−, V2eg := FegVeg, and V2g = FgV1g =
FegV1g (∵ Feg|imgV1g

= Fg|imgV1g
). Now, similar to the proof

of Statement (2) of Theorem 12, we use equation (16) in
equation (21) to obtain

[ J 0
0 I ]Z

[
V1g Veg

V2g V2eg

]
=
[
Ins 0
0 N

]
Z
[
V1g Veg

V2g V2eg

] [
Jg T1

0 T2

]
. (22)

Define Z
[
V1g

V2g

]
=:

[
V̂1g

V̂2g

]
and Z

[
Veg

V2eg

]
=:

[
V̂eg

V̂2eg

]
, where V̂1g ∈

Rns×ng and V̂eg ∈ Rns×neg . Thus, from equation (22), we get



[
J 0
0 I

] [
V̂1g V̂eg
V̂2g V̂2eg

]
=

[
Ins 0
0 N

] [
V̂1g V̂eg
V̂2g V̂2eg

] [
Jg T1

0 T2

]
. (23)

From Lemma 4, it follows that
[
V̂2g V̂2eg

]
= 0. Thus,

equation (23) reduces to

J
[
V̂1g V̂eg

]
=
[
V̂1g V̂eg

] [Jg T1

0 T2

]
. (24)

From equation (24), it is evident that σ(Jg)∪σ(T2) ⊆ σ(J).
But, we have assumed that σ(J) ∩ C− = σ(Jg). Hence,

σ(T2) ⊆ C+. This is a contradiction. Accordingly, there
does not exist any non-trivial subspace Veg such that
imgV1g ⊕ Veg = Owg. Hence, imgV1g = Owg.

(3): Since V1g ∈ Rn×ng , from Statement (1) and Statement
(2) of this theorem, it follows that dim(Owg) = ng. 2

4. APPLICATION TO THE HAMILTONIAN SYSTEM
ARISING FROM THE SINGULAR LQR PROBLEM

In this section, we apply the results developed in Section
3 to a special system, namely the Hamiltonian System
arising from the linear quadratic regulator (LQR) problem
(Problem 1). Recall that, the LQR problem is called a
regular LQR problem when R is non-singular, and it is
called a singular LQR problem when R is singular. Since,
R > 0, there exists an orthogonal U ∈ Rm×m such that

UTRU =

[
0 0

0 R̂

]
, where R̂ ∈ Rr×r and r := rankR.

If we define BU =: [B1 B2 ] and SU =: [ S1 S2 ], where
B2, S2 ∈ Rn×r, then we have that S1 = 0 (see (Bhawal
et al., 2019a, Lemma 1)). Hence, without loss of generality,
any singular LQR problem can be written as:

Problem 14. Consider the stabilizable system given by
d

dt
x(t) = Ax(t) +B1u1(t) +B2u2(t), (25)

where A ∈ Rn×n, B1 ∈ Rn×(m−r), and B2 ∈ Rn×r. Then,
for every initial condition x(0) = x0, find an input u(t) :=[
u1(t)
u2(t)

]
that minimizes the functional

J(xo, u) :=

∫ ∞
0

[
x(t)
u1(t)
u2(t)

]T  Q 0 S2

0 0 0

ST2 0 R̂

[ x(t)
u1(t)
u2(t)

]
dt, (26)

with lim
t→∞

x(t) = 0, Q ∈ Rn×n, S2 ∈ Rn×r, R̂ ∈ Rr×r,[
Q 0 S2

0 0 0

ST
2 0 R̂

]
> 0, and R̂ > 0.

A Cholesky factorization of the cost matrix

[
Q 0 S2

0 0 0

ST
2 0 R̂

]
gives us an auxiliary output equation for the system
defined in equation (25). We call this system, the primal for
the LQR Problem 14. The following is the formal definition
of the primal system for Problem 14.

Definition 15. Consider the LQR Problem 14. Let[
Q 0 S2

0 0 0

ST
2 0 R̂

]
=

[
CT

0
DT

2

]
[C 0 D2 ] , (27)

where C ∈ Rp×n, D2 ∈ Rp×m, and p := rank

[
Q 0 S2

0 0 0

ST
2 0 R̂

]
.

Define the system Σpr : d
dtx(t) = Ax(t)+B1u1(t)+B2u2(t)

and y(t) = Cx(t) + D2u2(t). We call the system Σpr, the
primal for the LQR Problem 14.

As mentioned before, another important system arising
from an LQR problem is the Hamiltonian system. We
obtain this system using Pontryagin’s maximum principle
(PMP) to Problem 14 1 :

[
In 0 0 0
0 In 0 0
0 0 0 0
0 0 0 0

]
︸ ︷︷ ︸

E

d

dt

[
x
z
u1
u2

]
=

 A 0 B1 B2

−Q −AT 0 −S2

0 BT
1 0 0

ST
2 BT

2 0 R̂


︸ ︷︷ ︸

H

[
x
z
u1
u2

]
, (28)

where E ∈ R(n+m)×(n+m) is partitioned conforming to the
partition in H. [ xz ] is called the state-costate pair. It fol-
lows from Pontryagin’s maximum principle that if (x∗, u∗)
is an optimal trajectory of the primal Σpr, then there
exists z∗ such that (x∗, z∗, u∗) belongs to the Hamiltonian
system. Hence, the trajectories of the Hamiltonian system

are of special interest. Recall that, R̂ is non-singular, and
hence u2 can be eliminated from equation (28) to obtain[

In 0 0
0 In 0
0 0 0

]
︸ ︷︷ ︸

Er

d

dt

[
x
z
u1

]
=

[
Ã −Az B̃

−Q̃ −ÃT 0

0 B̃T 0

]
︸ ︷︷ ︸

Hr

[
x
z
u1

]
, (29)

where Ã := A − B2R̂
−1ST2 , Q̃ := Q − S2R̂

−1ST2 , Az :=

B2R̂
−1BT2 , and B̃ := B1. This system is called the reduced

Hamiltonian system. Since

[
Q 0 S2

0 0 0

ST
2 0 R̂

]
> 0, by the notion of

Schur complement it is evident that Q̃ = Q−S2R̂
−1ST2 >

0. Throughout this paper, we assume that det(sEr −
Hr) 6= 0. Notice that the reduced Hamiltonian system
admits an output-nulling representation, ΣHam given by

d

dt
[ xz ]=

[
Ã −Az

−Q̃ −ÃT

]
︸ ︷︷ ︸

Ar

[ xz ]+
[
B̃
0

]
︸︷︷︸
Br

u1 and 0=[ 0 B̃T ]︸ ︷︷ ︸
Cr

[ xz ] .(30)

It turns out that the good slow space of ΣHam is pivotal in
solving the LQR Problem 14 (see Bhawal et al. (2019b),
Bhawal et al. (2019b)). Thus, in this section we compute
the good slow space of ΣHam. Clearly, (Er, Hr) as defined
in equation (29) is the Rosenbrock matrix pair of ΣHam.
Say, Λ := σ(Er, Hr) ∩ C−, ns := |Λ|, V1, V2 ∈ Rn×ns , and
V3 ∈ R(m−r)×ns be such that the columns of the matrix

Ve :=

[
V1

V2

V3

]
form a basis for the ns-dimensional stable

eigenspace of (Er, Hr), i.e.,[
Ã −Az B̃

−Q̃ −ÃT 0

0 B̃T 0

]
︸ ︷︷ ︸

Hr

[
V1

V2

V3

]
︸ ︷︷ ︸
Ve

=
[
In 0 0
0 In 0
0 0 0

]
︸ ︷︷ ︸

Er

[
V1

V2

V3

]
J, (31)

where J ∈ Rns×ns , σ(J) = Λ. Thus, we can directly apply
Lemma 13 to infer that the good slow space Owg of ΣHam

is given by Owg = img
[
V1

V2

]
. How the subspace Owg can

be used to solve the regular LQR problem is well-known
in the literature (see (Ionescu et al., 1999, Chapter 5)).

1 It should ne noted that if the system starts from an arbitrary initial
condition, then the optimal control for the singular LQR problem is
impulsive in nature and hence PMP becomes inapplicable there. But,
in this paper we deal with the initial conditions for which the system
admits only smooth optimal trajectories. Hence, we may apply PMP
here. However, in order to solve the problem for an arbitrary initial
condition the system given by equation (28) is crucial even though
PMP is not applicable (Bhawal et al. (2019b), Bhawal and Pal
(2019)).



In Bhawal and Pal (2019) Owg has been used to solve the
singular LQR problem for the single-input case. How to
use this subspace to solve the singular LQR problem for
the multi-input case is a matter of our future research.

Next, we divide this section in two parts to explore some
interesting properties of Owg. We first show a relation
between the good slow space (Vg) of the primal Σpr and
the subspace Owg. In the second part, we show that the
subspace imgVe is disconjugate (see Definition 18).

4.1 Relation between the spaces Vg and Owg

The following lemma is crucially used to establish a
relation between Vg and Owg.
Lemma 16. Consider the LQR Problem 14 and the cor-
responding primal Σpr as defined in Definition 15. Fur-

ther define the system Σaux : d
dtx(t) = Ãx(t) + B̃u(t),

y(t) = C̃x(t), where Ã, B̃ are as defined in equation (29)

and C̃ := C−D2R̂
−1ST2 . Let Vg andWg be the good slow

spaces of Σpr and Σaux, respectively. Then, Vg =Wg.

Proof. We prove this lemma in two steps. First we show
that Wg ⊆ Vg, and then we show that Vg ⊆ Wg.
(Wg ⊆ Vg): Say dim(Wg) =: g1 and Wg ∈ Rn×g1 be such

that Wg = imgWg. Clearly, there exist F ∈ R(m−r)×n and

J1 ∈ Rg1×g1 such that (Ã+B̃F )Wg = WgJ1 and C̃Wg = 0,

where σ(J1) ⊆ C−. Hence, from definition of Ã, B̃ and C̃,

it immediately follows that (A + B1F − B2R̂
−1ST2 )Wg =

WgJ1 ⇒ (A+ [B1 B2 ]
[

F

−R̂−1ST
2

]
)Wg = WgJ1. Also, (C −

D2R̂
−1ST2 )Wg = 0 ⇒ (C + [ 0 D2 ]

[
F

−R̂−1ST
2

]
)Wg = 0.

Consequently, Wg ⊆ Vg.

(Vg ⊆ Wg): Say, dim(Vg) =: g2 and Vg ∈ Rn×g2 be such

that Vg = imgVg. Thus, there exist F1 ∈ R(m−r)×n, F2 ∈
Rr×n, and J2 ∈ Rg2×g2 such that

(A+[B1 B2 ]
[
F1

F2

]
)Vg=VgJ2 and (C+[ 0 D2 ]

[
F1

F2

]
)Vg=0,(32)

where σ(J2) ⊆ C−. Now, (C + [ 0 D2 ]
[
F1

F2

]
)Vg = 0 ⇒

D2F2Vg = −CVg ⇒ DT
2 D2F2Vg = −DT

2 CVg. Notice, from

equation (27), that DT
2 D2 = R̂ and CTD2 = S2. Thus, we

have

F2Vg = −R̂−1ST2 Vg. (33)

Next, using equation (33) in equation (32), we get (Ã +

B̃F1)Vg = VgJ2 and C̃Vg = 0. Thus, Vg ⊆ Wg. Hence, we
finally conclude that Vg =Wg. 2

Next, we state and prove the lemma which establishes a
relation between Vg and Owg.
Lemma 17. Let Vg and Owg be the good slow spaces of the
primal Σpr (defined in Definition 15) and the Hamiltonian
system ΣHam (defined by equation (30)), respectively. De-
fine the subspace

VgHam := {[ v0 ] ∈ R2n | v ∈ Vg}.
Then, VgHam ⊆ Owg.

Proof. Let g := dimVg and Vg ∈ Rn×g be such that
Vg = imgVg. Thus, using Lemma 16, we infer that there

exists F ∈ R(m−r)×n such that

(Ã+ B̃F )Vg = VgJg and C̃Vg = 0, (34)

where σ(Jg) ⊆ C−. Also, since C̃ = C − D2R̂
−1ST2 , it is

easy to verify that C̃T C̃ = Q̃. Hence, defining V3g := FVg,
we have the following: Ã −Az B̃

−Q̃ −ÃT 0

0 B̃T 0

[ Vg0n,g
V3g

]
=

[
In 0 0
0 In 0
0 0 0

][
Vg
0n,g
V3g

]
Jg

or,

[
Ar Br

Cr 0

][ Vg
0n,g
V3g

]
=

[
I2n 0
0 0

] [ Vg
0n,g
V3g

]
Jg, (35)

where Ar, Br, and Cr are as defined in equation (30). From

equation (35), it is clear that Ar

[
Vg

0n,g

]
+ BrV3g = (Ar +

Br [ F 0(m−r),n ])
[
Vg

0n,g

]
=
[
Vg

0n,g

]
Jg; and Cr

[
Vg

0n,g

]
= 0. Thus,

from Definition 11, it is evident that img
[
Vg

0n,g

]
⊆ Owg.

But, notice that img
[
Vg

0n,g

]
=VgHam. Hence, VgHam ⊆ Owg. 2

4.2 Disconjugacy of imgVe

In this section, we show that the subspace imgVe (defined
in equation (31)) is disconjugate. We present the definition
of disconjugacy next.

Definition 18. Let W be an eigenspace of the matrix pair
(Er, Hr) as defined in equation (29). Assume that the
columns of the matrix W form a basis for the eigenspace
W. Further, conforming to the partition in Hr, say W be

partitioned as

[
W1

W2

W3

]
. Then, W is said to be disconjugate

if W1 is full column-rank.

From the definition of disconjugacy, it is clear that dis-
conjugacy of imgVe is equivalent to V1 (defined in equa-
tion (31)) being full column-rank. We show at the end
of this section that if the system starts from an initial
condition from imgV1, then the singular LQR problem can
be solved using a smooth input. Thus, disconjugacy of
imgVe provides us with the basis and dimension of the
subspace of the state-space for which the problem can
be solved using smooth input if the system starts from
that subspace. Disconjugacy of imgVe also enables us to
provide a feedback law if the initial condition is from imgV1
(Theorem 22). To prove that V1 is full column-rank, we
need two auxiliary results. We present these results one
by one. The first auxiliary result is a well-known result
about the left- and right-eigenspaces of the Hamiltonian
matrix pair (Er, Hr) (Ionescu et al. (1999)). For the sake
of easy referencing, we present this as a proposition next.

Proposition 19. Let the columns of the matrix Ve =
col(V1, V2, V3) form a basis for the eigenspace of the
matrix pair (Er, Hr) corresponding to the eigenvalues in
Λ, where (Er, Hr) is as defined in equation (29), and
Λ := σ(Er, Hr)∩C−. Then the following statements hold:

(1) Rows of the matrix [ V T
2 −V

T
1 V T

3 ] form a basis for the
left-eigenspace of (Er, Hr) corresponding to eigenval-
ues in −Λ. (Note: λ ∈ −Λ⇔ −λ ∈ Λ)

(2) V T1 V2 = V T2 V1.

Next, recall from Lemma 17 that img
[
Vg

0

]
⊆ Owg. Thus,

there exist V12, V22 ∈ Rn×(ns−g), where ns := dim(Owg),
such that Owg = img

[
Vg V12

0 V22

]
. We use this fact in the

following lemma which plays a pivotal role in proving the
disconjugacy of the subspace imgVe.



Lemma 20. Let V12, V22 ∈ Rn×(ns−g) be such that Owg =

img
[
Vg V12

0 V22

]
, where ns := dim(Owg), g := dim(Vg), Vg ∈

Rn×g, and imgVg = Vg. Then, the following are true:

(1) V22 is full column-rank.
(2) V T22V12 > 0.
(3) [Vg V12] is full column-rank.

Proof. (1): Since img
[
Vg V12

0 V22

]
= Owg, by Definition 11,

there exist Fe ∈ R(m−r)×2n, Γ12 ∈ Rg×(ns−g), and Γ22 ∈
R(ns−g)×(ns−g) such that

(Ar+BrFe)

[
V12

V22

]
=

[
Vg V12

0 V22

][
Γ12

Γ22

]
, and Cr

[
V12

V22

]
=0,(36)

where Ar, Br, and Cr are as defined in equation (30).

Define V32 := Fe

[
V12

V22

]
. Then, combining equation (35)

and equation (36), we get[
Ã −Az B̃

−Q̃ −ÃT 0

0 B̃T 0

][
Vg V12

0n,g V22

V3g V32

]
=
[
In 0 0
0 In 0
0 0 0

][ Vg V12

0n,g V22

V3g V32

][
Jg Γ12

0 Γ22

]
︸ ︷︷ ︸

Js

. (37)

Now, since img
[
Vg V12

0n,g V22

]
= Owg, it is evident that σ(Js) ⊆

C−, which, in turn, implies that σ(Γ22) ⊆ C−. Next, from
equation (37), we get

ÃV12 −AzV22 + B̃V32 = VgΓ12 + V12Γ22, (38)

−Q̃V12 − ÃTV22 = V22Γ22, (39)

B̃TV22 = 0. (40)

Clearly, img

[
Vg V12

0n,g V22

V3g V32

]
is an eigenspace of the Hamil-

tonian matrix pair (Er, Hr). Thus, from Statement 2

of Proposition 19, it follows that [ Vg V12 ]
T

[ 0n,g V22 ] =

[ 0n,g V22 ]
T

[ Vg V12 ], which further implies that

V T22Vg = 0 and V T22V12 = V T12V22. (41)

Next, we pre-multiply equation (38) by V T22 and equation
(39) by −V T12, and then add them together to get

V T22ÃV12 − V T22AzV22 + V T22B̃V32 + V T12Q̃V12 + V T12Ã
TV22

= V T22VgΓ12 + V T22V12Γ22 − V T12V22Γ22. (42)

By using equation (40) and equation (41), equation (42)
can be further reduced to obtain

V T22ÃV12 − V T22AzV22 + V T12Q̃V12 + V T12Ã
TV22 = 0. (43)

Now, we prove Statement (1) of this lemma by contradic-
tion. Thus, we assume that V22 is not full column-rank.
So, there exists w ∈ R(ns−g)×1, w 6= 0 such that V22w = 0.
Therefore, on pre- and post-multiplication of equation (43)

by wT and w, respectively, we get wTV T12Q̃V12w = 0. But,

since Q̃ > 0, we have Q̃V12w = 0. Hence,

kerV22 ⊆ kerQ̃V12. (44)

Post-multiplying equation (39) by w, we get −Q̃V12w −
ÃTV22w = V22Γ22w. But, recall that V22w = 0 and

Q̃V12w = 0. Consequently, V22Γ22w = 0. Hence, kerV22
is Γ22-invariant.
So, there exists a full column-rank matrix T ∈ R(ns−g)×•

such that V22T = 0 and Γ22T = TΓ, σ(Γ) ⊆ σ(Γ22) ⊆ C−.

Moreover, from equation (44), we have Q̃V12T = 0. Now,

post-multiplying equation (38) by T and using the fact
that V22T = 0 and Γ22T = TΓ, we have

ÃV12T + B̃V32T = VgΓ12T + V12TΓ. (45)

Recall that, C̃T C̃ = Q̃. So, from the fact that Q̃V12T = 0,
it is clear that

C̃V12T = 0. (46)

Thus, combining equation (34), equation (45), and equa-
tion (46) together we derive that[

Ã B̃

C̃ 0

] [
Vg V12T
V3g V32T

]
=

[
In 0
0 0

] [
Vg V12T
V3g V32T

] [
Jg Γ12

0 Γ

]
.

Since σ(Jg), σ(Γ) ⊆ C−, from Lemma 13, it follows that
img [ Vg V12T ] is contained in the largest good slow space,

Wg, of the system Σaux : d
dtx = Ãx + B̃u, y = C̃x. But,

from Lemma 16 we know that Wg = Vg = imgVg. So,
img [ Vg V12T ] = imgVg. Thus, there exist α1 ∈ Rg×1 and a
non-zero α2 ∈ R•×1 such that

Vgα1 + V12Tα2 = 0. (47)

Recall that, V22T = 0. Thus, V22Tα2 = 0. Combining this

with equation (47), we have
[
Vg V12

0 V22

] [ α1

Tα2

]
= 0. But, T

being full column-rank and α2 6= 0 implies that Tα2 6= 0.
Consequently, we have a non-zero vector

[ α1

Tα2

]
inside

ker
[
Vg V12

0 V22

]
. This is contradiction, because

[
Vg V12

0 V22

]
is full

column-rank. Therefore, V22 must be full column-rank.

(2): From equation (41), we know that V T22V12 is symmet-
ric. Now, we prove that V T22V12 > 0 in two steps. First,
we show that V T22V12 > 0, and then we show that V T22V12

is non-singular. Pre-multiplying equation (38) by V T22 and
using equation (40) and equation (41), we have

V T22ÃV12 − V T22AzV22 = V T22V12Γ22. (48)

Also, by taking transpose of equation (39), and then post-
multiplying by V12, we obtain

−V T12Q̃V12 − V T22ÃV12 = ΓT22V
T
22V12. (49)

Adding equation (48) and equation (49) together, we get

−V T12Q̃V12 − V T22AzV22 = V T22V12Γ22 + ΓT22V
T
22V12. (50)

Since, Q̃ > 0 and Az = B2R̂
−1BT2 > 0, we have V T12Q̃V12 +

V T22AzV22 > 0. Now, notice that equation (50) is a Lya-
punov equation. Recall that Γ22 is Hurwitz. Thus, by
Lyapunov’s theorem, we conclude that V T22V12 > 0.
Next, to the contrary, assume that V T22V12 is singular.

Then, we must have that (
[
Q̃ 0
0 Az

][
V12

V22

]
,Γ22) is unob-

servable (see (Wonham, 1985, Lemma 12.2)). Thus, there
exists a non-zero v ∈ C(ns−g)×1 such that

Γ22v = λv, for some λ ∈ σ(Γ22) ⊆ C−, and[
Q̃ 0
0 Az

][
V12

V22

]
v=0⇔ Q̃V12v=0 & AzV22v=0. (51)

Now, right-multiplying equation (39) with v and using

Q̃V12v = 0 from equation (51), we have

ÃTV22v= (A−B2R̂
−1ST2 )TV22v=−λV22v. (52)

Also, AzV22v = B2R̂
−1BT2 V22v = 0 ⇔ R̂−1BT2 V22v =

0 ⇔ BT2 V22v = 0. Combining this with equation (40), we

get vTV T22 [B1 B2 ] = 0, because B̃ = B1. Further, using
BT2 V22v = 0 in equation (52), we get that ATV22v =



−λV22v. From Statement (1) of this lemma, we know
that V22 is full column-rank. So, v being a non-zero
vector implies that V22v 6= 0. This means that V22v is
an eigenvector of AT corresponding to the eigenvalue −λ.
But, vTV T22 [B1 B2 ] = 0 and λ ∈ C− ⇒ −λ ∈ C+. This
contradicts the assumption that (A, [B1 B2 ]) is stabilizable
(see Problem 14). Hence, V T22V12 is non-singular. We also
showed that V T22V12 > 0. Therefore, V T22V12 > 0.

(3): Say, β1 ∈ Rg×1 and β2 ∈ R(ns−g)×1 be such that

[ Vg V12 ]
[
β1

β2

]
= 0. Pre-multiplying this equation with V T22

and using equation (41), we have V T22V12β2 = 0. But, from
Statement (2) of this lemma, we know that V T22V12 is non-
singular. So, β2 = 0. This further implies that Vgβ1 = 0,
which, in turn, implies that β1 = 0, because Vg is full

column-rank. Thus, [ Vg V12 ]
[
β1

β2

]
= 0⇒

[
β1

β2

]
= 0. Hence,

[ Vg V12 ] is full column-rank. 2

Now, we are in a position to show that the subspace imgVe
is disconjugate. We present this result as a theorem next.

Theorem 21. Let (Er, Hr) be the Hamiltonian matrix pair
as defined in equation (29). Also, consider the eigenspace,
imgVe, of (Er, Hr) as define in equation (31) . Then, imgVe
is disconjugate.

Proof. Recall, from equation (31), that Ve =

[
V1

V2

V3

]
.

We also know that img
[
V1

V2

]
= Owg. But, from the

statement of Lemma 20, we have that img
[
Vg V12

0 V22

]
= Owg.

Thus, img
[
V1

V2

]
= img

[
Vg V12

0 V22

]
⇒ imgV1 = img [ Vg V12 ].

Now, V1 and [ Vg V12 ] both have ns number of columns.
Furthermore, from Statement (3) of Lemma 20, we get
that [ Vg V12 ] is full column-rank. Hence, we must have that
V1 is full column-rank. Therefore, imgVe is disconjugate.2

The following theorem renders the optimal trajectories and
a feedback law to solve Problem 14, if the initial condition
is from imgV1.

Theorem 22. Consider the singular LQR Problem 14, V1,
and J as defined in equation (31). Suppose x0 = V1α,
α ∈ Rns×1, is an arbitrary initial condition from imgV1.
Then,

(1) (xs, us1 , us2) is the optimal trajectory, where xs :=

V1e
Jtα, us1 := V3e

Jtα, and us2 := −R̂−1(ST2 V1 +
BT2 V2)eJtα.

(2) There exist feedbacks F1 ∈ R(m−r)×n and F2 ∈ Rr×n

such that us1 = F1xs and us2 = F2xs.

Proof. (1): Define z0 := V2α and zs := V2e
Jtα. Then, us-

ing equation (31), it is easy to verify that (xs, zs, us1 , us2)
is a trajectory for the Hamiltonian system defined by equa-
tion (28) corresponding to the initial condition (x0, z0). It
can also be verified that (xs, us1 , us2) is a trajectory for
the system d

dtx = Ax + B1u1 + B2u2 corresponding to
the initial condition x0. Hence, from Pontryagin’s maxi-
mum principle it follows that (xs, us1 , us2) is the optimal
trajectory corresponding to the initial condition x0.

(2): From Theorem 21, it follows that V1 is full column-
rank. Thus, there exist K1 ∈ R(m−r)×n and K2 ∈ Rn×n

such that V3 = K1V1 and V2 = K2V1. Define F1 := K1

and F2 := −R̂−1(ST2 + BT2 K2). Then, it is evident that
us1 = F1xs and us2 = F2xs. This completes the proof. 2

5. CONCLUSION

In this paper we have provided a characterization of the
slow and the good slow spaces. This characterization auto-
matically gives a method to compute these subspaces from
an eigenspace of the corresponding Rosenbrock system
matrix. Furthermore, we have shown how to obtain the
dimensions of these subspaces from the degree of the de-
terminant of the Rosenbrock matrix pencil. Then, we have
applied these results to the Hamiltonian system obtained
from the singular LQR problem to explore some interesting
properties. In this paper we have used the good slow space
of the Hamiltonian to provide a feedback which solves the
singular LQR problem when the initial condition of the
system belong to a certain subspace. This space has been
used in Bhawal and Pal (2019) to solve the singular LQR
problem for any arbitrary initial condition for the single-
input case. We wish to use the results developed in this
paper to solve the problem for the multi-input case.
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J.C. Willems, A. Kitapçi, and L.M. Silverman. Singular
optimal control: a geometric approach. SIAM Journal
on Control and Optimization, 24(2):323–337, 1986.

W.M. Wonham. Linear Multivariable Control: A Geomet-
ric Approach. Springer-Verlag, New York, 1985.


