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Abstract

The primary objective of this thesis is to put forth a generalized Riccati theory that is applicable
not only to problems/systems that admit algebraic Riccati equation (ARE) but also to prob-
lems/systems that do not admit AREs due to singularity of certain matrices. To achieve this we
use a more fundamental object than the AREs. We use the linear matrix inequalities (LMIs)
from which AREs are known to arise; we call these LMIs the dissipation LMIs. The primary
reason for using these LMIs is the fact that their existence do not depend on the nonsingularity
of any matrices. Primarily, we deal with two typical applications in this thesis where AREs do
not exist but the dissipation LMIs do, viz., a singular linear quadratic regulator (LQR) prob-
lem with the underlying system having a single-input and a passive SISO system with a strictly
proper transfer function. We call the dissipation LMI corresponding to a singular LQR problem
the LQR LMI and the one corresponding to a passive SISO system the KYP LMI. In order to
achieve our objective, we first show that the maximal and rank-minimizing solutions of the LQR
and KYP LMI, respectively can be computed by an extension of a conventional Hamiltonian
based method used to solve these LMIs for the case when they admit AREs. This extension
comes in the form of compensating the eigenspaces of a suitable matrix pencil by adding new
basis vectors coming from a subspace of the strongly reachable space corresponding to the
underlying Hamiltonian system. This straightaway leads to interesting system-theoretic inter-
pretations in terms of the dissipation LMI solutions. Using the method to compute the maximal
solution of an LQR LMI, we not only show that almost every (made precise in a suitable topol-
ogy) singular LQR problem can be solved using a proportional-derivative (PD) state-feedback
controller, but also provide a method to design such controllers. To this end, we also charac-
terize the optimal trajectories of a singular LQR problem corresponding to an arbitrary initial
condition. We show that, similar to the singular LQR case, a passive SISO system with proper
transfer function can be confined to its lossless trajectories using PD state-feedback controllers.
Apart from these, we also present algorithms to compute the solutions of KYP LMIs admitted
by a special and very familiar class of passive systems called lossless systems (ARE does not
exist for these too). These algorithms are designed using different notions of control theory and
network theory like states and costates of a system, Foster-Cauer network synthesis methods,
two-dimensional discrete Fourier transform, observability and controllability Gramian.
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Chapter 1

Introduction

The emergence of algebraic Riccati equation (ARE) in quadratic optimal control and dissipa-
tivity theory has been one of the cornerstones in control theory [Kal60], [Wil71], [TW91]. The
elegant theoretical framework of ARE combined with numerically stable algorithms for com-
putation of ARE solutions are perhaps the primary reasons for the widespread application of
ARE in control and system theory [LR95], [KTK99], [BS13]. From the literature on AREs, it
is known that an ARE always arises from a linear matrix inequality (LMI); we call these LMIs
the dissipation LMIs for ease of reference [LR95]. Nonsingularity of certain matrices, depend-
ing on the application (e.g. D+DT in case of passive systems), is crucial for the reduction of
these dissipation LMIs to their corresponding AREs. We call such matrices the feed-through
terms and the condition of nonsingularity of these matrices the feed-through regularity con-
dition. Interestingly, unlike AREs, existence of a dissipation LMI does not depend on the
feed-through regularity condition. Hence, there are systems/problems where an ARE does not
exist, due to non-satisfaction of the feed-through regularity condition, but the dissipation LMI
does. Thus, the fundamental object in any analysis that involves an ARE is not the ARE itself
but the dissipation LMI from which such an ARE arises. Since the theory developed for AREs
crucially hinges on the feed-through regularity conditions, the application of AREs are limited
to systems/problems that satisfy these conditions. Hence, there is a natural need for a common
theoretical framework that generalizes the theory of AREs to the dissipation LMIs such that
the generalized theory no longer has to depend on the feed-through regularity condition. In
this thesis, we bridge this gap between the ARE literature and the dissipation LMIs. Typical
examples of systems/problems where the AREs do not exist, but the dissipation LMIs do, are
the singular linear quadratic regulator (LQR) problems and passive single-input single-output
(SISO) systems that admit strictly proper transfer functions. We divide the thesis into two parts:

I. Infinite-horizon singular LQR problems,

II. Passive systems.

One of the salient features of the solutions of an ARE is the fact that such solutions have el-
egant system-theoretic interpretations. For example, in an infinite-horizon LQR problem, it is

1



2 Chapter 1. Introduction

known that the maximal solution of the corresponding ARE helps in characterizing the optimal
trajectories of the system [Kir04]. Further, such a solution also leads to the design of the state-
feedback controller that solves the corresponding LQR problem. Similarly, in passive systems,
the solutions of the corresponding ARE is related to the notion of optimal-charging and optimal-
discharging of the system [WT98]. Hence, while bridging the gap between the ARE literature
and the dissipation LMIs it is important that we generalize these system-theoretic interpreta-
tions in terms of the dissipation LMI solutions. To this end we not only put forth a generalized
Riccati theory but also provide methods to design feedback-controllers to solve infinite-horizon
singular LQR problems and confine passive systems to their optimal charging/discharging tra-
jectories.

1.1 A brief literature survey

In this section we present a brief literature survey of the problems we are dealing with in this
thesis. A more detailed literature survey is done in the beginning of each chapter of the thesis
based on the objective of each chapter.

1.1.1 Infinite-horizon singular LQR problems

The objective of an infinite-horizon singular LQR problem is as follows:

Problem 1.1. (Singular LQR problem) Consider a system Σ with state-space dynamics d
dt x =

Ax+Bu, where A ∈ Rn×n, B ∈ Rn×m. Then, for every initial condition x0 ∈ Rn, find an input u
that minimizes the functional

J(x0,u) :=
∫

∞

0

[
x
u

]T [
Q S
ST R

][
x
u

]
dt, (1.1)

where

[
Q S
ST R

]
> 0 and R is singular.

Since in this thesis we deal with infinite-horizon singular LQR problems only, we drop
the term infinite-horizon in the sequel. A typical example of a singular LQR problem is the
minimization of energy associated with a damped spring-mass system.

Example 1.2. Consider a damped spring-mass system as in Figure 1.1 with m, q, c, k, and
u being the mass, displacement of mass, coefficient of viscous friction, spring constant, and
applied force, respectively. On using (p1, p2) as states, where p1 := q and p2 := q̇, the dynamics
of the system is given by the following state-space equation:
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d
dt

[
p1

p2

]
=

 p2

− c
m

p2−
k
m

p1 +
u
m


=

 0 1

− k
m
− c

m

[p1

p2

]
+

 0
1
m

u k

u(t)

c

m

q

Figure 1.1: A damped spring-mass system

Then, for every initial condition x0 ∈Rn, find an input u that minimizes the total energy of
the system, i.e, find u that minimizes the functional

J(x0,u) =
∫

∞

0

(
1
2

kp2
1 +

1
2

mp2
2

)
dt =

1
2

∫
∞

0

[p1

p2

]T [
k 0
0 m

][
p1

p2

]dt. (1.2)

Note that there is no cost associated with the applied force (R = 0) in equation (1.2).

Another area in which singular LQR problems naturally arise is that of cheap control
problems, i.e., problems where the cost of the control u is cheap relative to that of the state x.
In such problems the cost functional is of the form:

J(x0,u) :=
∫

∞

0

(
xT Qx+ ε

2uT Ru
)

dt,

where Q> 0, R> 0 and ε is a small positive parameter. Evidently, singular LQR problems are
a limiting case (ε → 0) of cheap LQR problems [HS83, Comment 2.12], [SS87]. The singular
LQR problem, therefore, becomes relevant in any design problem that uses cheap control, in
order to predict its limiting behavior. Such design problems can be pole-positioning problems
([AM71] [KS72]), inverse-regulator problems ([MA73]), differential games ([Pet86]) among
other control applications.

It is noteworthy that for the case when the LQR Problem 1.1 has R > 0, called the regular
LQR problem, an ARE of the form AT K +KA+Q− (KB+ S)R−1(BT K + ST ) = 0 exists and
a suitable solution of this ARE is used to design static state-feedback controllers to solve the
problem. However, in [HS83] the authors showed that for a singular LQR problem the inputs
that minimize equation (1.1), called optimal inputs, are impulsive in nature and hence cannot
be implemented by a static state-feedback control law. Following this work, the authors in
[WKS86] provided a method, based on Morse’s canonical form, to compute the optimal inputs
for the singular LQR Problem 1.1 and alluded to the fact that such inputs can be implemented
using high-gain feedback controllers. Another interesting work in [Sch83] established a link
between the optimal cost of a singular LQR problem and the maximal solution, among all
rank-minimizing solutions, of the corresponding dissipation LMI. In this thesis, we call such
a solution the maximal rank-minimizing solution of the corresponding dissipation LMI. Some
other areas in which work related to the singular case has been done in the past are singular
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spectral-factorization in [CF89], singular H2 control in [Sto92], singular H2 and H∞ control
in [CS92], etc.. There has been interesting work in this area in the recent years, as well. In
[KBC13] the authors showed that singular LQR problems, under suitable assumptions, can
be solved by proportional-derivative controllers. On the other hand, in [FN14], [FN16] and
[FN18] the authors established that some singular LQR problems can be solved using static
state-feedback. However, the results present in the literature, to the best of our knowledge,
neither provide a method to solve a singular LQR problem using state-feedback in general nor
links the solutions of the dissipation LMI that arises in such a problem to the optimal input that
solves the problem.

1.1.2 Passive systems

A passive system with a minimal input-state-output (i/s/o) representation of the form d
dt x =

Ax+Bu and y = Cx+Du is known to admit solutions to the LMI arising out of the Kalman-
Yakubovich-Popov (KYP) lemma [Kal63], [Yak62], [Pop64]:[

AT K +KA KB−CT

BT K−C −(D+DT )

]
6 0. (1.3)

These solutions are known in the literature as the storage functions of the system due to their
link to stored energy of the system [WT98]. We call the inequality (1.3) the KYP LMI for the
ease of reference. Those passive systems that satisfy D+DT > 0, the feed-through regularity
condition here, therefore admit an ARE: AT K +KA+(KB−CT )(D+DT )−1(BT K−C) = 0.
However, there is a large class of passive systems that do not admit such an ARE but does admit
an KYP LMI of the form in inequality (1.3). A typical example of such a system is an RLC
network.

Example 1.3. Consider the RLC network given in Figure 1.2. On using (vc, iL) as states, where
vc is the capacitor voltage and iL is the inductor current, the state-space dynamics of the system
is given by:

d
dt

[
vC

iL

]
=

[
0 1

C
− 1

L −R
L

][
vC

iL

]
+

[
0
1

]
v

i =
[
0 1

][vC

iL

]
+

+ −

−

R L C

vCiLv

Figure 1.2: An RLC circuit

Note that the RLC network in Figure 1.2 does not admit a feedthrough term, i.e, D = 0 and
hence, it does not admit an ARE.

Recently, it has been shown in [Rei11] that using the notion of deflating subspaces on a
suitable matrix pencil it is possible to compute special solutions of the LMI (1.3). In [RRV15]
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the authors further generalized this idea to differential-algebraic systems, as well. It is note-
worthy that the idea of using deflating subspaces to compute solutions of dissipation LMIs
was introduced in [vD81]. Importantly, the idea of deflating subspaces provide a generalized
framework for solving dissipation LMIs of the form (1.3) and the ones arising in singular LQR
problems. However, there is no literature available, to the best of our knowledge, as to how
these deflating subspaces can be linked to trajectories of the system or design state-feedback
strategies to solve a problem like the one in Problem 1.1.

1.2 Contributions and outline of the thesis

Based on the application that we are dealing with, the entire thesis is divided into two parts.
The first part is dedicated to singular LQR problems and the second to storage functions of
passive SISO systems that do not admit AREs. Although there are two parts to the thesis there
is common underlying theory that we develop throughout the thesis. We string it all together in
the final chapter, Chapter 8, of the thesis to arrive at a generalized Riccati theory. Most of the
results in this thesis are for single-input (in the singular LQR case) or single-input single-output
(in the passivity case) systems, unless mentioned otherwise.

Now that we have a clear idea about the organization of the thesis, we present the main
objectives and contributions of each of the chapters next. Part-I of the thesis consists of Chapters
2 - 4 and Chapters 5 - 7 form Part-II of the thesis.

Chapter 2: Computation of the optimal cost of an LQR problem is known to depend
on the maximal rank-minimizing solution of the corresponding LMI. Hence, our objective is
to provide a method to compute the maximal rank-minimizing solution of the LMI arising in a
singular LQR problem.
Contribution: We present a method to compute the maximal rank-minimizing solution of the
dissipation LMI that arises in a singular LQR problem. We show that one of the methods, based
on Hamiltonian systems, to compute the maximal rank-minimizing solution of a dissipation
LMI that admits ARE can indeed be extended to work for the singular case. We achieve this
by substituting the role of the eigenspace involved in the computation of the maximal rank-
minimizing solution of an LQR LMI by certain subspaces, namely weakly unobservable (slow)
and strongly reachable (fast) subspaces, of the Hamiltonian system. To this end we present a
novel characterization of the slow and fast subspaces of a SISO system in terms of certain matrix
pencil. The theory developed in this chapter lays the foundation of the theoretical framework
that generalizes the theory of AREs to dissipation LMIs.

Chapter 3: Solution of a regular LQR problem using static state-feedback is known to be
possible. However, a state-feedback control law to solve a singular LQR problem is not known,
in general. Hence, our objective is to find a state-feedback control law that solves the singular
LQR problem.
Contribution: Using the theory developed in Chapter 2, we establish that almost every infinite-
horizon LQR control problem with single-input admits an optimal solution in the form of a
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feedback that is a suitable constant linear combination of the state and its first derivative, a PD
(proportional plus derivative) state-feedback. The only assumption that we make is that a suit-
able matrix pair does not admit any eigenvalues on the imaginary axis. The theory developed in
this chapter provides a system-theoretic interpretation to the maximal rank-minimizing solution
of the dissipation LMI that arises in a singular LQR problem.

Chapter 4: It has been shown in the literature that solvability of the constrained general-
ized continuous algebraic Riccati equation (CGCARE) is a necessary and sufficient condition
for a singular LQR problem to admit a solution that is implementable as a static state-feedback
control law. Hence, our objective is to find conditions for the solvability of CGCARE.
Contribution: We provide a set of necessary and sufficient conditions for the solvability of a
CGCARE. Using these conditions we show that a CGCARE generically does not admit solu-
tions. This further leads to the conclusion that a singular LQR problem generically disallows
solution by a static state-feedback law. The theory developed in this chapter shows that almost
all singular LQR problems cannot be solved using static state-feedback controllers. Hence, in
order to solve such problems we need to use PD-controllers that we designed in Chapter 3.

Chapter 5: The objective of this chapter is to provide an algorithm to compute the rank-
minimizing solutions of a KYP LMI corresponding to a passive SISO system, for the case when
the system does not admit an ARE. Such solutions of the KYP LMI are also known as the stor-
age functions of the system. We call passive SISO systems that do not admit AREs and have no
poles and zeros on the imaginary axis singularly passive SISO systems.
Contribution: Using the notions of weakly unobservable subspace and strongly reachable sub-
space we propose an algorithm to compute the rank-minimizing solutions of the KYP LMI
(1.3) corresponding to a singularly passive SISO system. The theory developed in this chapter
is analogous to the one developed in Chapter 2.

Chapter 6: Passive systems that admit ARE are known to admit extremal storage func-
tions and lossless trajectories. Extremal storage functions are the maximal and minimal solu-
tions of an ARE. On the other hand, lossless trajectories of a passive system are special trajecto-
ries related to the notion of optimal-charging and optimal-discharging of RLC circuits. Both the
notions of extremal storage functions and lossless trajectories are known to be interlinked for
passive systems that admit AREs. Hence, the objective of this chapter is to generalize the no-
tion of extremal storage functions, lossless trajectories and the link between them for singularly
passive SISO systems.

Contribution: We show that the set of solutions of the KYP LMI for singularly passive
systems can be partially ordered with two extremal solutions with one being a maximum and the
other being a minimum. This result is derived from a system-theoretic result that shows that the
confinement of the initial conditions of a singularly passive SISO system over a suitably chosen
set results in smooth lossless trajectories. All these results finally lead to a characterization of
the lossless trajectories of a singularly passive SISO system. Further, we also introduce the
notion of fast lossless trajectories of a singularly passive SISO system in this chapter. The
results in this chapter are analogous to the ones developed in Chapter 3.
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Chapter 7: In Chapter 7 we look into a special and very familiar class of passive systems
called lossless systems. These systems do not satisfy the feed-through regularity condition and
admit the KYP LMI (1.3) with equality. Lossless systems being special passive systems exhibit
certain characteristics that other passive systems do not exhibit. Hence, the objective of this
chapter is to propose methods to compute the storage functions of lossless systems utilizing the
special characteristic properties of lossless systems.
Contribution: In this chapter we propose new results and algorithms to compute the storage
function of a lossless system. The results in this chapter do not share the same theoretical frame-
work as is developed in Chapters 2 - 6. We use five different techniques to compute the storage
function of a lossless system. The first method is based on inversion of a controllability ma-
trix, the second method is LC realization based (Foster, Cauer and their combinations) and the
third is based on the Bezoutian of two polynomials. The notion of controllability/observability
Gramians is used for the fourth, while the last method is based on the algebraic relations be-
tween the states and costates of a lossless system. A comparative study among the five methods
shows that the Bezoutian method is one of the best in computational time and accuracy. Three
different methods to compute the Bezoutian is also reported in the chapter: Euclidean long
division, Pseudo-inverse method and the two dimensional discrete Fourier transform.

Chapter 8: In this chapter we draw parallels between the results in Part-I and Part-II of
the thesis. Finally, irrespective of whether ARE exists or not, we arrive at a generalized theory
applicable to singular LQR problems corresponding to a single-input, singularly passive SISO
systems, and singular case of bounded-real SISO systems, as well.
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Singular LQR problems
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Chapter 2

Maximal rank-minimizing solution of an
LQR LMI: single-input case

2.1 Introduction

Singular linear quadratic regulator (LQR) problem is an important problem in optimal con-
trol with a long history [KS72], [Fra79], [HS83], [Sch83], [SS87], [WKS86], [HSW00]. This
problem still continues to be an active area of research [PNM08], [KBC13], [FN14], [FN16],
[FN18]. In order to motivate the results in this chapter, we first state the infinite-horizon LQR
problem [Kal60].

Problem 2.1. (Infinite-horizon LQR problem) Consider a controllable system Σ with mini-
mal state-space dynamics d

dt x = Ax+Bu, where A ∈ Rn×n, B ∈ Rn×m. Then, for every initial
condition x0 ∈ Rn, find an input u that minimizes the functional

J(x0,u) :=
∫

∞

0

[
x
u

]T [
Q S
ST R

][
x
u

]
dt, (2.1)

where

[
Q S
ST R

]
> 0 and R> 0.

A typical example of an infinite-horizon LQR problem is as follows:

Example 2.2. Consider a system with state-space dynamics

ẋ1 = x1 + x3, ẋ2 = x1 + x3 +u, ẋ3 = x1 + x2

For every initial condition x0, find an input u that minimizes the functional
∫

∞

0 x2
3 dt.

Problem 2.1 with singular R is known in the literature as the singular LQR problem and
with R > 0 it is known as the regular LQR problem. Evidently, Example 2.2 is a singular LQR
problem. The input u that solves the LQR Problem 2.1 is known as the optimal input and the
corresponding states x are known as the optimal state-trajectories of the system. Further, the

11
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minimizers col(x,u) of J(x0,u) in equation (2.1) are also called the optimal trajectories of
the system Σ. Interestingly, it is known in the literature that the regular LQR problem, under
suitable assumptions, is solvable using a static state-feedback law of the form u(t) = Fx(t),
where F := −R−1(BT Kmax + ST ) and Kmax is the maximal solution of the algebraic Riccati
equation (ARE):

AT K +KA+Q− (KB+S)R−1(BT K +ST ) = 0. (2.2)

In other words, for regular LQR problems the state-feedback law u(t) = Fx(t) confines the
set of state-trajectories of the system Σ to the optimal ones. However, it is known that for the
singular LQR case such a confinement, using the feedback law u(t) = Fx(t), is not possible
[HS83], [WKS86]. For one, a feedback matrix F , as defined above, does not exist because R
is non-invertible for the singular LQR case. Moreover, the ARE itself does not exist either.
However, all LQR problems, irrespective of regular or singular, admit LMIs of the form:[

AT K +KA+Q KB+S
BT K +ST R

]
> 0. (2.3)

We call this the LQR LMI. Notably, it has been established in [Sch83] that for any LQR prob-
lem, the optimal cost is given by xT

0 Kmaxx0, where Kmax is the maximal among all the rank-
minimizing solutions of the LQR LMI (2.3). For ease of reference, we call such a solution
the maximal rank-minimizing solution of the LQR LMI. Hence, in order to compute the optimal
cost of an LQR problem, it is imperative that the maximal rank-minimizing solution of the LQR
LMI (2.3) be computed. For a regular LQR problem, the maximal rank-minimizing solution of
the LQR LMI is given by the maximal solution of the corresponding ARE. There are numerous
methods to compute the maximal solution of an ARE. However, these methods cannot be used
to compute the maximal rank-minimizing solution of an LQR LMI for the singular case. In this
chapter, we show that for single-input systems, one of the methods to compute the maximal
rank-minimizing solution of an LQR LMI for the regular case (Proposition 2.19) can be ex-
tended to the singular case. This method, for the regular case, is based on computing a suitable
eigenspace of the corresponding Hamiltonian system [IOW99, Chapter 5]. A direct extension
of this method to the singular case fails, since the dimension of the suitable eigenspace of the
Hamiltonian system in such a case is less than what is required to compute the maximal rank-
minimizing solution of the LQR LMI (see Example 2.20). We show in this chapter that the
Hamiltonian system based method for the regular case can indeed be extended to the singular
case by substituting the role of eigenspace of the Hamiltonian system in the regular case by the
subspaces namely weakly unobservable (slow) and strongly reachable (fast) subspaces of the
Hamiltonian system.

The idea of strongly reachable and weakly unobservable subspaces have been known to
be crucial in singular LQR problem (see [HS83], [WKS86], [HSW00]). In these works, the
strongly reachable and weakly unobservable subspaces of a system, on which the singular LQR
problem is posed, have been characterized. Recursive algorithms, to compute such subspaces
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for a system, have also been provided in these works. We, however, apply these notions not to
the system itself, but to the corresponding Hamiltonian system that one may obtain directly by
applying Pontryagin’s maximum principle (PMP) to the problem (notwithstanding the fact that
the impulsive nature of the optimal control for singular problems makes application of PMP
inappropriate). The singularity of R (and hence of the LQR problem) manifests itself in causing
the Hamiltonian system to be given by a system of differential algebraic equations (DAEs),
as opposed to a system of differential equations in state-space form for the regular case. The
DAEs of the Hamiltonian system naturally give rise to its weakly unobservable and strongly
reachable subspaces. These subspaces ultimately lead us to a method to construct maximal
rank-minimizing solution of the LQR LMI for a single-input system (Theorem 2.30).

In order to arrive at this method, we first use the recursive algorithms to characterize the
weakly unobservable and strongly reachable subspaces of a single-input single-output (SISO)
system in terms of a suitable matrix pencil known as the Rosenbrock system matrix. These are
the first two main results of this chapter that we develop in Section 2.3 (Theorem 2.24 and The-
orem 2.25). The primary take away from the results in Section 2.3 is the relation between the
relative degree of the transfer function of a system and the dimensions of its weakly unobserv-
able and strongly reachable subspaces. We exploit this relation and the fact that for autonomous
systems the weakly unobservable and strongly reachable subspaces are the direct summands of
the state-space to develop a method to compute the maximal rank-minimizing solution of the
LQR LMI for the singular case. This is the third main result of this chapter (Theorem 2.30),
which we present in Section 2.4. Another result that leads to Theorem 2.30 is the disconju-
gacy property of a certain eigenspace of a suitable matrix pencil called the Hamiltonian matrix
pencil. This is the fourth main result of this chapter (Theorem 2.32) presented in Section 2.4.

2.2 Preliminaries

In this section we review some of the preliminary notions required to develop the results in this
chapter.

2.2.1 Regular and singular matrix pencils

The notion of regular and singular matrix pencils are crucially used throughout the thesis and
these are defined as follows:

Definition 2.3. [Dai89, Definition 1-2.1] A matrix pencil U(s) := sU1−U2 ∈R[s]n×n is said to
be regular if there exist a λ ∈C such that det(λU1−U2) 6= 0. In other words, U(s) is regular if
det(sU1−U2) 6= 0. On the other hand, the matrix pencil U(s) is singular if det(sU1−U2) = 0.

For the sake of brevity, we call the matrix pair (U1,U2) regular (singular) if its correspond-
ing matrix pencil (sU1−U2) is regular (singular). Another concept that is used throughout this
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thesis is the notion of eigenvalues and eigenvectors corresponding to a linear matrix pencil. We
define them next.

Definition 2.4. [Dua10, Section 3.6] Consider a regular matrix pencil (sU1−U2) with λ ∈
roots(det(sU1−U2)). Then λ is called an eigenvalue of (U1,U2) and every nonzero vector
v ∈ ker (λU1−U2) is called an eigenvector of the matrix pair (U1,U2) corresponding to the
eigenvalue λ . Further, every nonzero vector ṽ∈ ker (λU1−U2)

k, where k∈{2,3, . . .}, is called
a generalized eigenvector of the matrix pair (U1,U2) corresponding to the eigenvalue λ .

The number of times λ ∈ C appears as a root of det(sU1−U2) is called the algebraic
multiplicity of the eigenvalue λ . We use the symbol σ(U1,U2) to denote the set of eigenvalues
of (U1,U2) (with λ ∈ σ(U1,U2) included in the set as many times as its algebraic multiplicity).

2.2.2 Output-nulling representation and Rosenbrock system matrix

Next we define the notion of Rosenbrock system matrix that has been extensively used in this
thesis.

Definition 2.5. [Ros67] Consider a system with an input-state-output (i/s/o) representation of
the form

d
dt

x = Ax+Bu, and y =Cx+Du, where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n, and D ∈ Rp×p.

Then, the matrix

[
sIn−A −B
−C −D

]
is called the Rosenbrock system matrix and the matrix pair([

In 0
0 0p,p

]
,

[
A B
C D

])
is called the corresponding Rosenbrock matrix pair.

Among the different ways of representing a system, the output-nulling representation of a
system is of importance to us in this thesis and hence, we define this next.

Definition 2.6. [WT02] A system is said to be in its output-nulling representation if it admits an
i/s/o dynamics of the following form:

d
dt

x = Ax+Bu, and 0 =Cx+Du, where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n, and D ∈ Rp×p.

2.2.3 Canonical form of singular descriptor systems

In this thesis, we extensively use one of the canonical forms of a regular matrix pencil (see
[Dai89] for more on different canonical forms). We review the result that leads to such a canon-
ical form next.
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Proposition 2.7. [Dai89, Lemma 1-2.2] A matrix pair (U1,U2) is regular if and only if there ex-
ist nonsingular matrices Z1 and Z2 such that Z1U1Z2 = diag(In1,Y ) and Z1U2Z2 = diag(U, In2),
where n1 +n2 = n,U ∈ Rn1×n1 , and Y ∈ Rn2×n2 is nilpotent1.

A matrix pair (U1,U2) in the form

([
In1

Y

]
,

[
U

In2

])
is said to be in a canoni-

cal form. Further, note that det(sU1−U2) = k× det(sIn1 −U), where k ∈ R \ {0}. Hence,
roots(det(sU1−U2)) = roots(det(sIn1−U)). In other words, the eigenvalues of U are the
finite eigenvalues of the matrix pair (U1,U2). This canonical form of linear matrix pencils is
extensively used in singular descriptor system literature to decompose a singular descriptor sys-
tem into two subsystems, namely the slow and fast subsystems. The next proposition sheds light
into such a decomposition: see [Dai89] for more on such decompositions.

Proposition 2.8. [Dai89, Section 1-4] Consider a singular descriptor system Σsing with a state-
space dynamics U1

d
dt x = U2x, where det(sU1−U2) 6= 0, U1,U2 ∈ Rn×n and U1 is singular.

Then, there exists nonsingular matrices Z1,Z2 ∈ Rn×n such that

d
dt

x1 =Ux1 and Y x2 = x2 (2.4)

with the coordinate transformation col(x1,x2) = Z−1
2 x, Z1U1Z2 = diag(In1,Y ), and Z1U2Z2 =

diag(U, In1), where n1 +n2 = n and Y is nilpotent with a nilpotency index h.
Further, the unique states of the system due to an initial condition x0 are given by the following:

x(t) = Z2

[
In1

0

]
eUt
[
In1 0

]
Z−1

2 x0−Z2

[
0

In2

]
h−1∑
i=1

δ
(i−1)Y i

[
0 In2

]
Z−1

2 x0. (2.5)

The system
[

In1
Y

]
d
dt

[
x1x2

]
=
[U

In2

] [ x1
x2

]
is said to be a canonical form of the system

Σsing. From equation (2.5) it is evident that the subspace spanned by the first n1 columns
of Z2 corresponds to the slow (exponential) states of the system Σsing. Hence, we call it the
slow subsystem of the system Σsing. Further, the subspace spanned by the last n2 columns of
Z2 corresponds to the fast (impulsive) states of the system Σsing and hence we call it the fast
subsystem of the system Σsing.

2.2.4 (A,B)-invariant subspace and controllability subspace

We briefly review the notions of (A,B)-invariant subspace and controllability subspace next (see
[Won85, Chapters 4 and 5] for more on these subspaces).

Definition 2.9. [Won85, Section 4.2] A ∈ Rn×n and B ∈ Rn×m. A subspace S ⊆ Rn is said to
be (A,B)-invariant if there exists a matrix F ∈ Rm×n such that (A+BF)S ⊆S .

1A nilpotent matrix Y is a square matrix such that Y h = 0 for some positive integer h. The smallest positive
integer h for which Y h = 0 is called the nilpotency index of a nilpotent matrix Y .
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Following the notation in [Won85], we use the symbol I(A,B) for the family of (A,B)-
invariant subspaces. The notation F(S ) is used for the collection of matrices F ∈ Rm×n such
that (A+BF)S ⊆S . Such a matrix F is called a friend of S . The next proposition provides
a test for determining whether a given subspace is (A,B)-invariant [Won85, Lemma 4.2]. We
use this test throughout this thesis.

Proposition 2.10. [Won85, Lemma 4.2] A subspace S ⊆ Rn is (A,B)-invariant if and only if
AS ⊆S +img B.

The notation I(A,B;kerC) denotes the family of (A,B)-invariant subspaces that are con-
tained in kerC, where C ∈ Rp×n. It is known in the literature that the set I(A,B;kerC) admits
a unique supremal element [Won85, Lemma 4.4]. We use the symbol supI(A,B;kerC) to
represent the supremal element. This implies that for all S ∈ I(A,B;kerC), we must have
S ⊆ supI(A,B;kerC) .

Definition 2.11. [Won85, Section 5.1] Consider A ∈ Rn×n and B ∈ Rn×m. A subspace R ⊆ Rn

is a controllability subspace of the pair (A,B) if there exist F ∈ Rm×n and G ∈ Rm×m, such that
R is the reachable subspace of the pair (A+BF,BG), i.e.

R = img
[
BG (A+BF)BG (A+BF)2BG · · · (A+BF)n−1BG

]
.

We use the symbol C(A,B) for the family of controllability subspaces of (A,B). The
notation C(A,B;kerC) denotes the family of controllability subspaces that are contained in
kerC. Similar to I(A,B;kerC), the set C(A,B;kerC) also admits a unique supremal element
that we represent by supC(A,B;kerC) [Won85, Theorem 5.4].

Using the notation (A+BF)|S to represent the restriction of (A+BF) to the (A,B) in-
variant subspace S , we define the set

B := {S ∈ I(A,B,kerC) | there exists F ∈ F(S ) such that σ ((A+BF)|S )(C−} .

We call any subspace in B a good (A,B)-invariant subspace inside kerC. As shown in [Won85,
Lemma 5.8], the set B admits a supremal element defined as S ∗

g := supB, i.e., for all elements
S ∈B,S ⊆S ∗

g . Hence, S ∗
g is called the largest good (A,B)-invariant subspace inside kerC.

On the other hand, if σ ((A+BF)|S ) ( C+ in the definition of the set B, then we call any
subspace in B a bad (A,B)-invariant subspace inside kerC and the corresponding supremal
element the largest bad (A,B)-invariant subspace inside kerC.

Let S ∗ := supI(A,B;kerC) and R∗ := supC(A,B;kerC). Further, let F ∈ F(S ∗).
Clearly, R∗ ⊆S ∗. Since R∗ is (A,B)-invariant hence the space S ∗ can be factored as S ∗ =

R∗+S ∗/R∗. Let (A+BF)|S ∗ denote the map induced by (A+BF)|S ∗ on the factor space
S ∗/R∗. Then, it is known that the set of eigenvalues σ

(
(A+BF)|S ∗

)
remains invariant for

all F ∈F(S ∗). For a system with an i/s/o representation d
dt x=Ax+Bu and y=Cx, the complex

numbers σ

(
(A+BF)|S ∗

)
are known as the transmission zeros of the system. Note importantly

that, for a single-input controllable system, we have R∗ = {0}. Consequently, S ∗/R∗ = S ∗,
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and (A+BF)|S ∗ = (A+BF)|S ∗ . This means that for single-input systems, σ((A+BF)|S ∗) is
the set of the transmission zeros. In other words, the set σ((A+BF)|S ∗) remains invariant for
all F ∈F(S ∗). Further, it can also be shown that for a controllable and observable SISO system,
the set σ((A+ BF)|S ∗) is equal to the set of the roots of the numerator of G(s) (elements
included in the set with multiplicity), where G(s) = C(sIn−A)−1B ∈ R(s) ([Won85, Section
5.5]). Using the symbol rootnum(p(s)) to denote the roots of the numerator of a rational
function p(s) ∈ R(s), we can therefore infer that σ((A + BF)|S ∗) = rootnum(G(s)). This
property of single-input systems is essential for the development of the theory in Section 2.3
and Section 2.4.

2.2.5 Weakly unobservable and strongly reachable subspaces

Consider the system Σ with an i/s/o representation d
dt x = Ax + Bu and 0 = Cx, where A ∈

Rn×n,B ∈ Rn×m and C ∈ Rp×n. Associated with such a system are two important subspaces
called the weakly unobservable subspace and the strongly reachable subspace. We briefly re-
view the properties of these subspaces next (see [HS83] for more on these spaces). Before we
delve into the definitions of these subspaces, we need to define the space of impulsive-smooth
distributions Cwimp (see [HS83], [WKS86]). In the sequel, we use the symbol δ and δ (i) to de-
note Dirac delta impulse function supported at zero and the i-th distributional derivative of δ

with respect to t, respectively. We also use the symbol C∞(R,Rn)|R+ to denote the space of all
functions from R+ to R that are restrictions of C∞(R,Rn) functions to R+.

Definition 2.12. [HS83, Definition 3.1] The set of impulsive-smooth distributions Cwimp is de-
fined as:

Cwimp :=

{
f = freg+ fimp | freg ∈ C∞(R,Rw)|R+ and fimp =

k∑
i=0

aiδ
(i), with ai ∈ Rw,k ∈ N

}
.

In what follows, we denote the state-trajectory x(t) and output-trajectory y(t) of the system
Σ corresponding to initial condition x0 and input u(t) using the symbols x(t;x0,u) and y(t;x0,u),
respectively. The symbol x(0+;x0,u) denotes the state-trajectory that can be reached from x0

instantaneously on application of the input u(t) at t = 0.

Definition 2.13. [HS83, Definition 3.8] A state x0 ∈ Rn is called weakly unobservable if there
exists a regular input u(t)∈C∞(R,Rm)|R+ such that y(t;x0,u)≡ 0 for all t > 0. The collection of
all such weakly unobservable states is called a weakly unobservable subspace of the state-space
and is denoted by Ow.

Next we review one of the properties of weakly unobservable subspace that is crucially
used in this thesis.

Proposition 2.14. [HS83, Theorem 3.10] The weakly unobservable subspace Ow is the largest
(A,B)-invariant subspace inside the kernel of C, i.e., Ow = supI(A,B;kerC).
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The other space that we are interested in, is the space of strongly reachable states.

Definition 2.15. [HS83, Definition 3.13] A state x1 ∈ Rn is called strongly reachable (from the
origin) if there exists an input u(t)∈Cmimp such that x(0+;0,u)≡ x1 and y(t;0,u)∈C∞(R,Rp)|R+ .
The collection of all such strongly reachable states is called the strongly reachable subspace of
the state-space and is denoted by Rs.

A method to compute the space Rs is given by the following recursion (see [HS83] for
more on the algorithm)

R0 := {0}(Rn, and Ri+1 :=
[
A B

]{
(Wi⊕P)∩ker

[
C 0p,m

]}
⊆Rs, (2.6)

where Wi := {[w
0 ] ∈ Rn+m |w ∈Ri} and P :=

{[
0
α

]
∈ Rn+m |α ∈ Rm

}
. In Section 2.3.1 we use

this recursive algorithm to characterize the strongly reachable subspace of a single-input system
in terms of the Rosenbrock system matrix.

Since the space Ow deals with infinitely differentiable inputs, we call Ow the slow subspace
of a system. Further, note that since Ow is the largest (A,B)-invariant subspace inside the kernel
of C, such a subspace also admits largest good and largest bad (A,B)-invariant subspace inside
the kernel of C. We call such a space the good slow subspace and the bad slow subspace of the
system, respectively and denote them with the symbols Owg and Owb, respectively. On the other
hand, since the space Rs admits impulsive inputs, we call Rs the fast subspace of the system.

In the sequel, we use the notion of autonomy of a system and its relation with the spaces
Ow and Rs. Hence, we define autonomy of a system first and then review the result [HSW00,
Lemma 3.3] that establishes a noteworthy property of Ow and Rs for autonomous systems.

Definition 2.16. [HSW00] A system with an output-nulling representation d
dt x = Ax+Bu and

0 = Cx, where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n, is called autonomous if for every initial
condition x0 ∈ Ow the system has a unique solution col(x,u).

Proposition 2.17. [HSW00, Lemma 3.3] Consider the system d
dt x = Ax+Bu and 0 =Cx, where

A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. Then the following are equivalent:

(1) The system is autonomous.

(2) G(s) :=C(sIn−A)−1B is invertible as a rational matrix.

(3) Ow⊕Rs = Rn and ker
[

B
0p,m

]
= {0}.

Since we are deal with single-input systems in this thesis, we consider the matrix B to be of
full column-rank without loss of generality. Hence, the second part of Statement (3) in the
proposition is always true.
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2.2.6 ARE and Hamiltonian systems

One of the widely used methods to compute the maximal solution of the ARE (2.2) is to use the
basis of a suitable eigenspace of the matrix pair (E,H), where

E :=

In 0 0
0 In 0
0 0 0p,p

 , and H :=

 A 0 B
−Q −AT −S

ST BT R

 . (2.7)

We call the matrix pair (E,H) the Hamiltonian matrix pair and the matrix pencil (sE−H) the
Hamiltonian pencil. The suitable eigenspace used to compute the maximal rank-minimizing
solution of the ARE (2.2) correspond to a certain choice of eigenvalues of (E,H). In order
to understand this choice of eigenvalues the notion of Lambda-sets is essential and hence we
define Lambda-sets next.

Definition 2.18. [Kuč91, PB08] Let p(s) be an even-degree polynomial with roots(p(s))∩
jR= /0. A set of complex numbers Λ ( roots(p(s)) is called a Lambda-set of p(s) if it satisfies
the following properties:

(1) Λ = Λ̄, i.e., if λ ∈ Λ then, λ̄ ∈ Λ. (complex conjugacy)

(2) Λ∩ (−Λ) = /0, i.e., if λ ∈ Λ then, −λ /∈ Λ. (unmixing)

(3) Λ∪ (−Λ) = roots(p(s)) (counted with multiplicity).

Now that we have the definition for Lambda-sets, we review the method to compute the maximal
solution of the ARE (2.2) (see [IOW99] for more). Recall that the maximal solution of an ARE
is the maximal rank-minimizing solution of the corresponding LMI (2.3).

Proposition 2.19. Consider the LQR Problem 2.1 with R > 0. Let the corresponding Hamil-
tonian matrix pair (E,H) be as defined in equation (2.7). Assume σ(E,H)∩ jR = /0. Let
Λ be a Lambda-set of det(sE −H) with cardinality n and Λ ( C−. Let V1Λ,V2Λ ∈ Rn×n

and V3Λ ∈ Rm×n be such that the columns of VeΛ = col(V1Λ,V2Λ,V3Λ) form a basis of the n-
dimensional eigenspace of (E,H) corresponding to the eigenvalues of (E,H) in Λ. Then, the
following statements hold.

(1) V1Λ is invertible.

(2) Kmax :=V2ΛV−1
1Λ

is symmetric.

(3) Kmax is the maximal solution of the ARE (2.2).

(4) Kmax is the maximal rank-minimizing solution of the corresponding LQR LMI (2.3).

(5) Kmax > 0.
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Although Proposition 2.19 does not explicitly use invertibility of R while finding the maximal
rank-minimizing solution of the LQR LMI, yet the proposition cannot be used to compute such
a solution for the singular LQR LMI. We motivate the reason for this using Example 2.2 stated
at the beginning of this chapter.

Example 2.20. From Example 2.2, we know that the state-space dynamics is:

d
dt

x1

x2

x3

=

1 0 1
1 0 1
1 1 0


x1

x2

x3

+
0

1
0

u.

Further, the functional to be minimized can be rewritten as

∫
∞

0

(
xT Qx

)
dt, where Q :=

0 0 0
0 0 0
0 0 1

 and x := col(x1,x2,x3).

On construction of the Hamiltonian pencil pair (E,H) using A,B,Q in Example 2.20, it can be
verified that det(sE−H) = 1−s2. Hence, Λ= {−1}. The eigenvector of (E,H) corresponding

to −1, is
[
1 1 −2 2 0 0 0

]T
. Therefore, V1Λ =

[
1 1 −2

]T
and V2Λ =

[
2 0 0

]T
.

But V1Λ is not a square matrix. Thus, Proposition 2.19 cannot be used to solve singular LQR
problems.

From Example 2.2, it is clear that Proposition 2.19 fails in case of singular LQR problems
because the degree of det(sE −H) is strictly less than 2n. This fall in the degree causes a
deficit in the cardinality of possible Lambda-sets of det(sE −H). Indeed, a Lambda set of
det(sE−H) can now have cardinality strictly less than n; we define it as ns < n. Consequently,
the eigenspace of (E,H) corresponding to such a Lambda-set would also show a deficit in
its dimension from being n. This deficit in the dimension of the eigenspace is required to be
compensated by (n−ns) suitable vectors. These suitable vectors must be the basis of a space
complementary to the eigenspace that supplies the ns vectors. Of course, this compensation
cannot cannot be done by the basis vectors of any arbitrary complementary space, since we
would not get a solution of the LQR LMI then. Our main result, Theorem 2.30, shows exactly
what this complementary space needs to be for getting the maximal rank-minimizing solution
of the LQR LMI.

Since we deal with the singular LQR problem for single-input systems, we rewrite the
LQR Problem 2.1 for the single-input case as follows:

Problem 2.21. (Single-input singular LQR problem) Consider a controllable system Σ with
state-space dynamics d

dt x = Ax+bu, where A ∈ Rn×n and b ∈ Rn. Then, for every initial con-
dition x0 ∈ Rn, find an admissible input u that minimizes the functional

J(x0,u) :=
∫

∞

0

(
xT Qx

)
dt, where Q> 0. (2.8)
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In the formulation of the singular LQR problem above, we have not explicitly defined
the space from which the inputs u need to be chosen. Since in this chapter we are primarily
concerned with the maximal rank-minimizing solution of an LQR LMI and do not deal with
the trajectory level interpretations of the LQR problem, we delay the definition of admissible
inputs to Chapter 3 (see Definition 3.4).

Note that the LQR LMI (2.3) with respect to Problem 2.21 takes the following form:[
AT K +KA+Q Kb

bT K 0

]
> 0 ⇔

AT K +KA+Q> 0,

Kb = 0.
(2.9)

Further, for single-input singular LQR problems as defined in LQR Problem 2.21, the Hamilto-
nian matrix pair in equation (2.7) takes the following form:

E :=

In 0 0
0 In 0
0 0 0

 , and H :=

 A 0 b
−Q −AT 0

0 bT 0

 . (2.10)

Interestingly, the Hamiltonian matrix pencil (E,H) in equation (2.10) can be associated with a
differential algebraic system as given below:In 0 0

0 In 0
0 0 0


︸ ︷︷ ︸

E

d
dt

x
z
u

=

 A 0 b
−Q −AT 0

0 bT 0


︸ ︷︷ ︸

H

x
z
u

 . (2.11)

The system represented by this first order representation (2.11) is called the Hamiltonian system;
we use ΣHam to denote this system (see [IOW99] for more on Hamiltonian systems). Further,
the Hamiltonian system in equation (2.11) can be written in an output-nulling representation as
given below:

d
dt

[
x
z

]
= Â

[
x
z

]
+ b̂u, 0 = ĉ

[
x
z

]
, (2.12)

where Â :=

[
A 0
−Q −AT

]
, b̂ :=

[
b
0

]
and ĉ :=

[
0 bT

]
. Note that the Hamiltonian matrix pair

(E,H) in equation (2.11) is indeed the Rosenbrock matrix pair for the Hamiltonian system ΣHam

in equation (2.12).
In what follows, we shall need the notion of disconjugacy of an eigenspace of the Hamil-

tonian matrix pair. We review this next.

Definition 2.22. [IOW99, Definition 6.1.5] Let E be an eigenspace of (E,H), where (E,H) is as
defined in equation (2.7). Assume the columns of a matrix Ve to be the basis of E . Conforming
to the partition of H, let Ve := col(V1,V2,V3). Then, E is called disconjugate if V1 is full
column-rank.
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2.3 Characterization of slow and fast subspaces in terms of
Rosenbrock system matrix

Consider Σp to be a system with an output-nulling representation of the form:

d
dt

x = Px+Lu, and 0 = Mx, where P ∈ RN×N,L,MT ∈ RN \{0}. (2.13)

Define the matrix pair

U1 :=

[
IN 0
0 0

]
∈ R(N+1)×(N+1) and U2 :=

[
P L
M 0

]
∈ R(N+1)×(N+1). (2.14)

Note that (sU1−U2) is the Rosenbrock system matrix for the system Σp in equation (2.13) and
(U1,U2) is the corresponding Rosenbrock matrix pair. In this section we characterize the slow
subspace Ow (weakly unobservable) and fast subspace Rs (strongly reachable) of the system
Σp in terms of the matrix pencil (U1,U2). Further, we also characterize the good slow subspace
of Σp in terms of the eigenspace of (U1,U2). Hence, we have divided this section into three
subsections; the first being characterization of the fast subspace of Σp. In the second and third
subsection we characterize the slow and good slow subspaces of Σp, respectively in terms of the
eigenspace of the Rosenbrock matrix pair (U1,U2).

2.3.1 Characterization of the fast subspace

In order to characterize the fast subspace, we need certain identities related to the Markov
parameters of the system Σp. We present this in the next lemma and follow it up with a result
that characterizes the fast subspace of the system Σp in terms of the matrix pair (U1,U2). In the
sequel, we use the symbol degdet(p(s)) to denote the degree of a polynomial p(s) ∈ R[s].

Properties of the Markov parameters of a SISO system

Lemma 2.23. Consider the system Σp as defined in equation (2.13). Let the corre-
sponding Rosenbrock matrix pair (U1,U2) be as defined in equation (2.14). Assume
det(sU1−U2) 6= 0. Define degdet(sU1−U2) =: Ns and Nf := N−Ns. Then,

MPkL = 0, for k ∈ {0,1, . . . ,Nf−2} and MPNf−1L 6= 0. (2.15)

Proof: Define G(s) := M(sIN−P)−1L ∈R(s). Using the notion of Schur complement, we have

det(sU1−U2) = det

[
sIN−P −L

−M 0

]
=−M(sIN−P)−1L×det(sIN−P)⇒ G(s) =−det(sU1−U2)

det(sIN−P)
.

Since degdet(sU1−U2) =: Ns and degdet(sIN−P) = N, the relative degree of G(s) must be
N−Ns = Nf. Now on expanding (sIN−P)−1 in a Taylor series about s = ∞, we have

G(s) = M(sIN−P)−1L =
1
s

M
(

IN+
P
s
+

P2

s2 + · · ·
)

L =
ML

s
+

MPL
s2 +

MP2L
s3 + · · · .
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Since the relative degree of the rational polynomial G(s) is Nf. Hence, we can infer from the
Taylor expansion of G(s) that

lim
s→∞

sk+1G(s) = 0 = MPkL for k ∈ {0,1, . . . ,Nf−2}.

Further, since relative degree of G(s) is Nf, lims→∞ sNfG(s) 6= 0. Hence, MPNf−1L 6= 0. �

Now using Lemma 2.23 we characterize the fast subspace of a SISO system.

Characterization of the fast subspace of a SISO system

Theorem 2.24. Consider the system Σp as defined in equation (2.13). Let the correspond-
ing matrix pencil pair (U1,U2) be as defined in equation (2.14). Assume det(sU1−U2) 6=
0. Define degdet(sU1−U2) =: Ns and Nf := N−Ns. Let Rs be the fast subspace of Σp.
Then, the following statements are true:

(1) Rs = img
[
L PL · · · PNf−1L

]
.

(2) dim(Rs) = Nf.

Proof: (1): From equation (2.6) in Section 2.2.5, the recursive algorithm to compute the fast
subspace of Σp is given by:

R0 := {0}(RN and Ri+1 :=
[
P L

]{
(Wi⊕P)∩ker

[
M 0

]}
⊆Rs,

=
[
P L

]{(
Wi∩ker

[
M 0

])
⊕
(
P ∩ker

[
M 0

])}
⊆Rs.

(2.16)

where Wi :=
{[w

0
]
∈ RN+1 |w ∈Ri

}
and P :=

{[
0
α

]
∈ RN+1 |α ∈ R

}
. Note that since P ∩

ker
[
M 0

]
= P , the recursion in equation (2.16) can be rewritten as

R0 = {0}(RN and Ri+1 =
[
P L

]{(
Wi∩ker

[
M 0

])
⊕P

}
⊆Rs. (2.17)

Now, we claim that Rk = img L+ img(PL) + · · ·+ img(Pk−1L) for k ∈ {1,2,3, . . . ,Nf}. To
prove this we use mathematical induction along with Lemma 2.23.
Base case: (k= 1) Since R0 = {0}, we have W0 = {0}. Therefore, we have

(
W0∩ker

[
M 0

])
=

{0}(RN+1. Then, using equation (2.17), we have

R1 =
[
P L

]{(
W0∩ker

[
M 0

])
⊕P

}
=
[
P L

]
{{0}⊕P}= img L.

Induction step: Assume Rk = img L+img(PL)+ · · ·+img(Pk−1L) for k < Nf. We prove that
Rk+1 = img L+img(PL)+ · · ·+img(PkL).



24 Chapter 2. Maximal rank-minimizing solution of an LQR LMI: single-input case

From equation (2.17), we have

Rk+1 =
[
P L

]{(
Wk∩ker

[
M 0

])
⊕P

}
=
[
P L

]{((k−1∑
i=0

img

[
PiL
0

])
∩ker

[
M 0

])
⊕P

}

=
[
P L

]{k−1∑
i=0

(
img

[
PiL
0

]
∩ker

[
M 0

])
⊕P

}
. (2.18)

Since [M 0 ]
[

PiL
0

]
= MPiL = 0 for i < Nf−1 (from Lemma 2.23), we must have

k−1∑
i=0

(
img

[
PiL
0

]
∩ker

[
M 0

])
=

k−1∑
i=0

(
img

[
PiL
0

])
.

Thus, from equation (2.18) we have

Rk+1 =
[
P L

]{k−1∑
i=0

(
img

[
PiL
0

])
⊕P

}
= img L+img(PL)+ · · ·+img(PkL).

By the principle of mathematical induction, we conclude that

Rk = img L+img(PL)+ · · ·+img(Pk−1L) for k ∈ {1,2,3, . . . ,Nf}. (2.19)

This proves our claim.
Next we claim that RNf+1 = RNf . From equation (2.17) and equation (2.19), we have

RNf+1 =
[
P L

]{(
WNf ∩ker

[
M 0

])
⊕P

}
=
[
P L

]{Nf−1∑
i=0

(
img

[
PiL
0

]
∩ker

[
M 0

])
⊕P

}

=
[
P L

]{Nf−2∑
i=0

(
img

[
PiL
0

]
∩ker

[
M 0

])
+

(
img

[
PNf−1L

0

]
∩ker

[
M 0

])
⊕P

}
.

(2.20)

From Lemma 2.23, we know that MPNf−1L 6= 0. Hence, img
[

PNf−1L
0

]
∩ker [M 0 ] = 0. Hence,

from equation (2.19) and equation (2.20) we have RNf+1 = RNf . Thus, from [HS83] (see
discussion after equation 3.22), we infer that RNf characterized in equation (2.19) is the fast
subspace Rs of Σp, i.e., RNf = Rs. From equation (2.19), Statement (1) of the lemma directly
follows.

(2): Define W :=
[
L PL · · ·PNf−1L

]
. To the contrary, let us assume that there exists

a nontrivial vector w ∈ RNf such that Ww = 0. Conforming to the partition of W let w :=
col(w0,w1, . . . ,wNf−1).
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Now, we pre-multiply W with M in the equation Ww = 0 and use the fact that MPkL = 0
for k ∈ {0,1, . . . ,Nf−2} from Lemma 2.23:

[
ML MPL · · · MPNf−1L

]


w0

w1
...

wNf−1

= 0⇒MPNf−1LwNf−1 = 0

⇒ wNf−1 = 0(since MPNf−1L 6= 0).

Next, we pre-multiply W with MP in the equation Ww = 0 and use Lemma 2.23 with the
fact that wNf−1 = 0:

[
MPL MP2L · · ·MPNf−1L MPNfL

]


w0

w1
...

wNf−2

0


= 0⇒MPNf−1LwNf−2 = 0⇒ wNf−2 = 0.

Continuing in the same manner, it is evident that wi = 0 for i ∈ {0,1, . . . ,Nf− 1}. However,
this is a contradiction since we assume w to be nonzero. Therefore, there exists no nontrivial
vector in the kernel of W , i.e., W is full column-rank. Hence, from Statement (1) of the lemma,
it directly follows that dim(Rs) = Nf. �

Thus, from Theorem 2.24 we establish that for a SISO system the fast subspace is the space
spanned by the columns of a truncated controllability matrix. This is expected because it is
known in the literature that for a SISO system the strongly reachable subspace is spanned by
a truncated controllability matrix [Wil81]. However, the main contribution of Theorem 2.24
is Statement (2) which shows that the dimension of the fast subspace depends on the relative
degree of the transfer function of the system. An important point to note here is that the relative
degree of a system remains invariant irrespective of the i/s/o representation of the system being
minimal or non-minimal. Hence, the dimension of the fast subspace is a system property.
Another salient feature of the fast subspace of Σp is that it is a Nf-dimensional subspace inside
the controllable subspace of the system Σp.

2.3.2 Characterization of the slow subspace

As motivated in Section 2.2.5, let Ow be the slow subspace of the system Σp defined in equation
(2.13). In the next lemma we establish that Ow can be characterized by the eigenvectors of the
Rosenbrock system matrix (U1,U2).
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Characterization of the slow subspace of a SISO system

Theorem 2.25. Consider the system Σp as defined in equation (2.13) and the cor-
responding Rosenbrock matrix pair (U1,U2) as defined in equation (2.14). Assume
det(sU1−U2) 6= 0 and degdet(sU1−U2) =: Ns. Consider Ow to be the slow subspace
of Σp. Let V̂1 ∈ RN×Ns and V̂2 ∈ R1×Ns be such thatP L

M 0


︸ ︷︷ ︸

U2

V̂1

V̂2

=

IN 0

0 0


︸ ︷︷ ︸

U1

V̂1

V̂2

J, where J ∈ RNs×Ns and σ(J) = roots(det(sU1−U2)) . (2.21)

Then, the following statements are true:
(1) Ow = img V̂1. (2) dim(Ow) = Ns. (3) V̂1 is full column-rank.

Proof: (1): From equation (2.21), it is clear that PV̂1 + LV̂2 = V̂1J. Hence, by Proposition
2.10, img V̂1 is a (P,L)-invariant subspace. Further, from equation (2.21), MV̂1 = 0. Therefore,
img V̂1 ∈ I(P,L;kerM). We claim that img V̂1 = supI(P,L;kerM), i.e, img V̂1 = Ow (by
Proposition 2.14).

Let us assume to the contrary that img V̂1 is not the largest (P,L)-invariant subspace inside
kerM. Then, there exists a nontrivial subspace Ve such that the space img V̂1 ⊕ Ve = Ow,
where dim(Ve) =: `. Let Ve = img V̂e, where V̂e ∈ RN×` is a full column-rank matrix. Since
img V̂1⊕Ve = Ow and Ow is (P,L)-invariant inside kerM, we must have by Proposition 2.10

POw ⊆Ow +img L⇒ P(imgV1Λ⊕Ve)⊆ Ow +img L⇒ PVe ⊆Ow +img L and MVe = {0}.

Therefore, there exist T1 ∈ R1×`, T2 ∈ RNs×`, and T3 ∈ R`×` such that

PV̂e = LT1 +
[
V̂1 V̂e

][T2

T3

]
and MV̂e = 0. (2.22)

Therefore, writing equation (2.21) and equation (2.22) together we have[
P L
M 0

]
︸ ︷︷ ︸

U1

[
V̂1 V̂e

V̂2 −T1

]
=

[
IN 0
0 0

]
︸ ︷︷ ︸

U2

[
V̂1 V̂e

V̂2 −T1

][
J T2

0 T3

]
. (2.23)

Since (sU1−U2) is a regular matrix pencil, we can rewrite (U1,U2) in the canonical form as de-
scribed in Section 2.2.3. Therefore, there exist nonsingular matrices Z1,Z2 ∈R(N+1)×(N+1) such

that U1 = Z1

[
I 0
0 Y

]
Z2 and U2 = Z1

[
J 0
0 I

]
Z2, where Y ∈ R(N+1−Ns)×(N+1−Ns) is a nilpotent

matrix. Define Û1 :=

[
I 0
0 Y

]
and Û2 :=

[
J 0
0 I

]
. Using this in equation (2.23), we have

Z1

[
J 0
0 I

]
Z2

[
V̂1 V̂e

V̂2 −T1

]
= Z1

[
I 0
0 Y

]
Z2

[
V̂1 V̂e

V̂2 −T1

][
J T2

0 T3

]
. (2.24)
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Let Z2

[
V̂1

V̂2

]
=:

[
TNs
T̃

]
, where TNs ∈ RNs×Ns and T̃ ∈ R(N+1−Ns)×Ns . From equation (2.24) we

have [
J 0
0 I

]
Z2

[
V̂1

V̂2

]
=

[
I 0
0 Y

]
Z2

[
V̂1

V̂2

]
J⇒

[
J 0
0 I

][
TNs
T̃

]
=

[
I 0
0 Y

][
TNs
T̃

]
J (2.25)

Therefore, from equation (2.25) we have T̃ = Y T̃ J. Pre- and post-multiplying this equation
by Y and J, respectively we have Y T̃ J = Y 2T̃ J2 ⇒ T̃ = Y 2T̃ J2. Continuing pre- and post-
multiplication with Y and J, it is clear that T̃ = Y kT̃ Jk for all k ∈ N. However, since Y is
nilpotent matrix, it admits a nilpotency index say h. Thus, we have T̃ = Y hT̃ Jh = 0. Therefore,

we have Z2

[
V̂1

V̂2

]
=

[
TNs
0

]
. Define Z2

[
V̂e

−T1

]
=:

[
ϒ1

ϒ2

]
, ϒ1 ∈RNs×` and ϒ2 ∈R(N+1−Ns)×`. Thus,

from equation (2.24) we have[
J 0
0 I

][
TNs ϒ1

0 ϒ2

]
=

[
I 0
0 Y

][
TNs ϒ1

0 ϒ2

][
J T2

0 T3

]
. (2.26)

Thus, we have ϒ2 =Y ϒ2T3⇒Y ϒ2T3 =Y 2ϒ2T 2
3 = ϒ2. Using this line of reasoning, it is evident

that Y kϒ2T k
3 = ϒ2 for all k ∈ N. Since Y is a nilpotent matrix, it admits a nilpotency index

h ∈ N and therefore, Y h = 0. Thus, we must have ϒ2 = 0. Since TNs is a nonsingular matrix,
img ϒ1 ( TNs . Thus, we have

img

[
ϒ1

ϒ2

]
= img

[
ϒ1

0

]
( img

[
TNs
0

]
⇒ img

(
Z−1

2

[
ϒ1

0

])
( img

(
Z−1

2

[
TNs
0

])

⇒ img

[
V̂e

−T1

]
( img

[
V̂1

V̂2

]
⇒ img V̂e ( img V̂1.

Therefore, there does not exist any nontrivial subspace Ve such that img V̂1⊕Ve = Ow. This is
a contradiction to the assumption that img V̂1 6= supI(P,L;kerM). Hence, img V̂1 = Ow.

(2): Define G(s) := M(sIN−P)−1L. Now computing det(sU1−U2) using the notion of
Schur complement with respect to (sIN−P), we have

det(sU1−U2) = det

[
sIN−P −L
−M 0

]
= (−M(sIN−P)−1L)×det(sIN−P). (2.27)

Since det(sU1−U2) 6= 0, we must have M(sIN−P)−1L = G(s) 6= 0. Hence, G(s) is nonzero
rational polynomial. Therefore, from Proposition 2.17 we have Ow⊕Rs =RN. From Statement
(2) of Lemma 2.24, we know that dim(Rs) = N−Ns. Therefore, dim(Ow) = Ns.
(3): From Statements (1) and (2) of this theorem, it follows that dim(Ow) = dim

(
img V̂1

)
= Ns.

Therefore, V̂1 is full column-rank. �

Thus, the dimension of the slow subspace of a SISO system is equal to N− Nf. For a SISO
system that is both controllable and observable, the dimension of the slow subspace is equal
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to the degree of the numerator of the system’s transfer function. On the other hand, for a non-
minimal system the dimension of the slow subspace = degree of numerator of the system’s
transfer function (after pole-zero cancellation) + number of uncontrollable/unobservable (or
both) eigenvalues of the system.

Next we characterize the good slow subspace of the system Σp in terms of the eigenspace
of the Rosenbrock matrix pair (U1,U2). From Theorem 2.25 it is clear that the columns of V̂1 is
the basis of Ow. Further, from equation (2.21) we know that[

P L
M 0

][
V̂1

V̂2

]
=

[
IN 0
0 0

][
V̂1

V̂2

]
J. (2.28)

Assuming that σ(J)∩ jR= /0, it is clear that σ(J) can be partitioned as σ(J) = σg(J) ·∪σb(J),
where σg(J) ( C−, σb(J) ( C+. Therefore, there exists a nonsingular matrix T such that

T−1JT =

[
Jg 0
0 Jb

]
, where σ(Jg) = σg(J) and σ(Jb) = σb(J). Define

[
V̂1

V̂2

]
T =

[
V̂1g V̂1b

V̂2g V̂2b

]
where the partitioning is done conforming to the partition in T−1JT . Then, equation (2.28)
takes the following form: [

P L
M 0

][
V̂1

V̂2

]
T =

[
IN 0
0 0

][
V̂1

V̂2

]
T T−1JT

⇒

[
P L
M 0

][
V̂1g V̂1b

V̂2g V̂2b

]
=

[
IN 0
0 0

][
V̂1g V̂1b

V̂2g V̂2b

][
Jg 0
0 Jb

]
. (2.29)

We claim in the next lemma that the good slow subspace of the system Σp is given by img V̂1g.

A basis for the good slow subspace of a SISO system

Lemma 2.26. Consider the system Σp as defined in equation (2.13) and the cor-
responding Rosenbrock matrix pair (U1,U2) as defined in equation (2.14). Assume
det(sU1−U2) 6= 0 and σ(U1,U2)∩ jR= /0. Define the family of subspaces:

B := {S ∈ I(P,L,ker M) | there exists F ∈ F(S ) such that σ ((P+LF)|S )(C−} .

Let Owg := supB. Consider V̂1g to be as defined in equation (2.29). Then,

img V̂1g = Owg.

Proof: Since V̂1 is full column-rank (by Theorem 2.25), V̂1g is full column-rank, as well. Let us
assume to the contrary that img V̂1g ( Owg. Then there exists a nontrivial subspace Ṽ such that
img V̂1g⊕ Ṽ = Owg. Define dim(img V̂1g) =: Ng and dim(Ṽ ) =: N`. Let Ṽ =: img Ṽ , where
Ṽ ∈RN×N` is full column-rank. Following the same line of argument as in the proof of Statement
(1) of Theorem 2.25, there exist T̂1 ∈ R1×N`, T̂2 ∈ RNg×N` and T̂3 ∈ RN`×N` such that

PṼ = LT̂1 +
[
V̂1g Ṽ

][T̂2

T̂3

]
,MṼ = 0 and σ(T̂3)(C−. (2.30)
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Therefore, from equation (2.29) and equation (2.30) we have[
P L
M 0

]
︸ ︷︷ ︸

U2

[
V̂1g Ṽ
V̂2g −T̂1

]
=

[
IN 0
0 0

]
︸ ︷︷ ︸

U1

[
V̂1g Ṽ
V̂2g −T̂1

][
Jg T̂2

0 T̂3

]
and σ(T̂3)∪σ(Jg)(C−. (2.31)

Now there exist nonsingular matrices Z1,Z2 ∈ R(N+1)×(N+1) such that U1 = Z1

[
I 0
0 Y

]
Z2 and

U2 = Z1

[
J 0
0 I

]
Z2. Therefore, equation (2.31) takes the following form:

Z1

[
J 0
0 I

]
︸ ︷︷ ︸

Û2

Z2

[
V̂1g Ṽ
V̂2g −T̂1

]
= Z1

[
I 0
0 Y

]
︸ ︷︷ ︸

Û1

Z2

[
V̂1g Ṽ
V̂2g −T̂1

][
Jg T̂2

0 T̂3

]
. (2.32)

From equation (2.32) it is clear that img

(
Z2

[
V̂1g

V̂2g

])
is a subspace of the eigenspace of the

matrix pair (Û1,Û2). Note that any eigenvector (or generalized eigenvector) of the matrix
pair (Û1,Û2) will be of the form col(w,0) ∈ R(N+1), where w ∈ RNs is an eigenvector (or
generalized eigenvector) of Jg. Thus, there exists a full column-rank matrix TNg ∈ RNs×Ng

such that Z2

[
V̂1g

V̂2g

]
=

[
TNg
0

]
∈ R(N+1)×Ng . Define Z2

[
Ṽ
−T̂1

]
=:

[
ϒ̂1

ϒ̂2

]
, where ϒ̂1 ∈ RNs×Ng and

ϒ̂2 ∈ R(N+1−Ns)×Ng . Thus, from equation (2.32) we have[
J 0
0 I

][
TNg ϒ̂1

0 ϒ̂2

]
=

[
I 0
0 Y

][
TNg ϒ̂1

0 ϒ̂2

][
Jg T̂2

0 T̂3

]
. (2.33)

From equation (2.33), we have ϒ̂2 = Y ϒ̂2T̂3. Since Y is nilpotent, similar to the proof of State-
ment (1) of Theorem 2.25, we must have ϒ̂2 = 0. Hence, equation (2.33) becomes

J
[
TNg ϒ̂1

]
=
[
TNg ϒ̂1

][Jg T̂2

0 T̂3

]
. (2.34)

Since σ(Jg)∪σ(T̂3)⊆σ(J), σ(J)∩C−=σ(Jg), and σ(J)∩ jR= /0, we must have σ(T̂3)(C+.
However this is a contradiction to the fact that σ(T̂3) ( C− (see equation (2.30)). Therefore,
there exists no nontrivial subspace Ṽ such that img V̂1g⊕ Ṽ = Owg. Hence, V̂1g = Owg. �

From Lemma 2.26 it is evident that for a controllable and observable SISO system, the dimen-
sion of the good slow subspace is equal to number of zeros of the system that have negative real
parts. On the other hand, for a non-minimal SISO case (uncontrollable/unobservable or both),
the dimension of the good slow subspace = number of zeros of the system that have negative
real parts + number of uncontrollable/unobservable (or both) eigenvalues of the system with
negative real part. Since we are dealing with SISO systems, in terms of transmission zeros, the
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dimension of the good slow subspace of the system is equal to the transmission zeros of the
system with negative real parts.

For a SISO system Σp with det(sU1−U2) 6= 0 and σ(U1,U2)∩ jR = /0, the state-space
admits a direct-sum decomposition of the following form.

Fast subspace of dimension NfSlow subspace of dimension Ns

Good slow subspace Bad slow subspace
Dimension: Ng Dimension: Nb⊕

⊕

RN: State-space of a system

Figure 2.1: A direct-sum decomposition of the state-space RN

In the next section we illustrate the results of this section with examples.

Illustrative examples

The first example we consider is that of a controllable and observable system.

Example 2.27. Consider a system Σp with the following i/s/o representation:

d
dt

x =


0 1 0 0
0 0 1 0
0 0 0 1
−1 −2 −3 −4


︸ ︷︷ ︸

P

x+


0
0
0
1


︸︷︷︸

L

u, 0 =
[
1 1 1 0

]
︸ ︷︷ ︸

M

x (2.35)

The transfer function for this system is: G(s) =
s+1

s4 +4s3 +3s2 +2s+1
. Here N = 4 and the

relative degree is Nf = 3. Hence, Ns = N−Nf = 1. The Rosenbrock matrix pair corresponding
to this system is:

U2 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−1 −2 −3 −4 1

1 1 1 0 0

 , and U1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 .

By simple multiplication it can be verified that det(sU1−U2) =−(s+1). Hence σ(U1,U2) =

−1. The eigenvector of (U1,U2) corresponding to −1 eigenvalue is
[
1 −1 1 −1 −1

]
.

Therefore, we have V̂1 =
[
1 −1 1 −1

]T
and img V̂1 is the slow subspace of the system.
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On the other hand, by Lemma 2.24, the fast subspace of the system is given by

Rs = img
[
L PL P2L

]
= img


0 0 0
0 0 1
0 1 −4
1 −4 13

 .
It is evident that

R4 = img


1
−1

1
−1

⊕img


0 0 0
0 0 1
0 1 −4
1 −4 13

 .
Further, note that since σ(U1,U2)(C−, therefore img V̂1 is indeed the only good slow subspace
of the system.

Note that in Example 2.27 the system is in a minimal i/s/o representation. Hence, the
dimension of the slow subspace is equal to the degree of the numerator of G(s). However, as
explained above this is not the case for non-minimal state-space representations. We illustrate
this with the help of another example where the i/s/o representation is not minimal.

Example 2.28. Consider a system Σp with the following i/s/o representation:

d
dt

x =


0 1 0 0
0 0 1 0
0 0 0 1

−24 −50 −35 −10


︸ ︷︷ ︸

P

x+


0
0
0
1


︸︷︷︸

L

u, 0 =
[
1 1 0 0

]
︸ ︷︷ ︸

M

x (2.36)

The transfer function for this system is:

G(s) =
1

s3 +9s2 +26s+24
.

Here N = 4 and the relative degree Nf = 3. Therefore Ns = 1. The Rosenbrock matrix pair
corresponding to this system is:

U2 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−24 −50 −35 −10 1
1 1 0 0 0

 , and U1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 .

By simple multiplication it can be verified that det(sU1−U2) =−(s+1). Hence σ(U1,U2) =

−1. The eigenvector of (U1,U2) corresponding to −1 eigenvalue is
[
1 −1 1 −1 −1

]
.

Therefore, we have V̂1 =
[
1 −1 1 −1

]T
and img V̂1 is the slow subspace of the system.
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On the other hand, by Lemma 2.24, the fast subspace of the system is given by

Rs = img
[
L PL P2L

]
= img


0 0 0
0 0 1
0 1 −10
1 −10 65

 .
It is evident that

R4 = img


1
−1

1
−1

⊕img


0 0 0
0 0 1
0 1 −10
1 −10 65

 .
Further, note that since σ(U1,U2)(C−, therefore img V̂1 is indeed the only good slow subspace
of the system.

Note that in Example 2.28 the degree of the numerator of G(s) is zero. However, we have
Ns = 1. This is because the system in the example is unobservable with −1 as the unobservable
eigenvalue. Hence, the dimension of the slow subspace = degree of the numerator of G(s) +
number of uncontrollable/unobservable (or both) of the system = 0+1 = 1.

Now that we have characterized the slow and fast subspaces of a system in terms of Rosen-
brock system matrix, we use these subspaces to present a method to compute the maximal
rank-minimizing solution of an LQR LMI for single-input systems.

2.4 Maximal rank-minimizing solution of LQR LMI: single-
input case

Before we present the first main result of this section, we show the determinant of the Hamil-
tonian pencil admits a Lambda-set. Note that this result is known in the literature, however we
reproduce it next as a lemma for the sake of completeness.

A Hamiltonian matrix pair admits Lambda-sets

Lemma 2.29. Consider the singular LQR Problem 2.21 with a Hamiltonian matrix pair
(E,H) as defined in equation (2.10) and σ(E,H)∩ jR= /0. Let C ∈ Rr×n be a full row-
rank matrix such that Q =: CTC. Define G(s) =: C(sIn−A)−1b. Assume let G(s) =: N(s)

d(s) ,
where N(s) ∈ R[s]r and d(s) = det(sIn−A). Then, the following statements are true:

(1) det(sE−H) = N(−s)T N(s).

(2) If det(sE−H) /∈ R, then det(sE−H) admits a Lambda-set.

Proof: (1): On computing det(sE −H) using Schur-complement with respect to (sI2n− Â),
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we have

det(sE−H) = det

[
sI2n− Â −b̂
−ĉ 0

]
=−ĉ(sI2n− Â)−1b̂×det(sI2n− Â) (2.37)

Now using the fact that Q =CTC, we have

ĉ(sI2n− Â)−1b̂ =
[
0 bT

][sIn−A 0
Q sIn+AT

]−1[
b
0

]

=
[
0 bT

][ (sIn−A)−1 0
−(sIn+AT )−1Q(sIn−A)−1 (sIn+AT )−1

][
b
0

]

=
[
0 bT

][ (sIn−A)−1 0
−(sIn+AT )−1CTC(sIn−A)−1 (sIn+AT )−1

][
b
0

]
=−bT (sIn+AT )−1CTC(sIn−A)−1b

= G(−s)T G(s) =
N(−s)T N(s)
d(−s)d(s)

. (2.38)

Using equation (2.38) and the fact that det(sI2n− Â) = d(−s)d(s) in equation (2.37), we have

det(sE−H) =
N(−s)T N(s)
d(−s)d(s)

×det(sI2n− Â) = N(−s)T N(s).

(2): From Statement (1) of this lemma it is clear that σ(E,H) = roots
(
N(−s)T N(s)

)
. Note

that

λ ∈ roots
(
N(−s)T N(s)

)
⇒−λ ∈ roots

(
N(−s)T N(s)

)
.

Further, since N(−s)T N(s) ∈ R[s], we must have

λ ∈ roots
(
N(−s)T N(s)

)
⇒ λ̄ ∈ roots

(
N(−s)T N(s)

)
.

Thus, the roots of N(−s)T N(s) are symmetric about the real and imaginary-axis of the C-
plane. Therefore, N(−s)T N(s) = det(sE−H) is a even-degree polynomial. Let degdet(sE−
H) =: 2ns. Since σ(E,H)∩ jR = /0⇒ roots

(
N(−s)T N(s)

)
= /0, we must have ns roots of

det(sE−H) in C− and the rest ns in C+. By the definition of Lambda-sets in Definition 2.18,
the collection of roots of det(sE−H) in C− (or C+) is a Lambda-set of det(sE−H). �

Using the fact that the determinant of a Hamiltonian pencil is a even-degree polynomial that
admits a Lambda-set, we present the first main result of this section that provides a method to
compute the maximal rank-minimizing solution of an LQR LMI.
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A method to compute the maximal rank-minimizing solution of an LQR LMI

Theorem 2.30. Consider Problem 2.21 with the corresponding Hamiltonian matrix pair
(E,H) as defined in equation (2.11). Assume σ(E,H)∩ jR = /0 and det(sE−H) 6= 0.
Define degdet(sE−H) =: 2ns. Let Λ be a Lambda-set of det(sE−H) with cardinality
ns < n such that Λ ( C−. Let V1Λ, V2Λ ∈ Rn×ns and V3Λ ∈ R1×ns be such that the
columns of VeΛ = col(V1Λ,V2Λ,V3Λ) form a basis of the ns-dimensional eigenspace of
(E,H) corresponding to the eigenvalues of (E,H) in Λ: A 0 b

−Q −AT 0
0 bT 0


V1Λ

V2Λ

V3Λ

=

In 0 0
0 In 0
0 0 0


V1Λ

V2Λ

V3Λ

Γ, (2.39)

where σ(Γ) = Λ. Construct VΛ := col(V1Λ,V2Λ) and assume nf := n−ns. Define W :=[
b̂ Âb̂ · · · Ânf−1b̂

]
∈ R2n×nf , where Â and b̂ are as defined in equation (2.12). Let

XΛ :=
[
VΛ W

]
=:
[

X1Λ

X2Λ

]
. Then, the following statements hold.

(1) X1Λ is invertible.

(2) Kmax := X2ΛX−1
1Λ

is symmetric.

(3) Kmax is a rank-minimizing solution of LMI (2.9).

(4) For any other solution K of LMI (2.9), K 6 Kmax.

(5) Kmax > 0.

We defer the proof of this theorem till the development of a few auxiliary results. Note the
close parallel between Proposition 2.19 and Theorem 2.30. For the case when nf = 0, i.e. the
regular LQR case, Theorem 2.30 is indeed equivalent to Proposition 2.19. Thus, Theorem 2.30
is a generalization to Proposition 2.19.

Now we relate the results in Section 2.3 with the Hamiltonian system ΣHam defined in
Section 2.2.6. Using the parallel between the output-nulling representations of Σp (in equation
(2.13)) and ΣHam (in equation (2.12)), we define P := Â, L := b̂, M := ĉ, U1 := E, and U2 :=
H. Further, we have degdet(sE −H) = 2ns. Therefore, Ns = 2ns and Nf = N− Ns = 2n−
2ns = 2nf. Thus, the dimension of the slow and fast subspace of the Hamiltonian system ΣHam

corresponding a singularly passive SISO system is 2ns and 2nf, respectively. Hence, Theorem
2.24, Theorem 2.25, and Lemma 2.26 can be directly applied to the system ΣHam. From Lemma
2.26 it is evident that img

[
V1Λ

V2Λ

]
is the largest good (Â, b̂)-invariant subspace inside the kernel

of ĉ. Hence, the good slow subspace of ΣHam is given by Owg = img
[

V1Λ

V2Λ

]
. Further, using

Theorem 2.24, it is also evident that imgW ( Rs, where W is as defined in Theorem 2.30 and
Rs is the fast subspace of ΣHam.

Before we start developing the results required for the proof of Theorem 2.30, we review
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a result that establishes the relation between the basis vectors of the left- and right-eigenspaces
of Hamiltonian matrix pair (see [IOW99] for more on these properties).

Proposition 2.31. [IOW99, Proposition 6.18] Let the columns of VeΛ = col(V1Λ,V2Λ,V3Λ) span
the eigenspace of (E,H) corresponding to the eigenvalues in Λ, where E,H,V1Λ,V2Λ,V3Λ,Λ are
as defined in Theorem 2.30. Then, the following statements are true:

(1) Rows of
[
V T

2Λ
−V T

1Λ
V T

3Λ

]
are the basis of the left eigenspace of (E,H) corresponding

to eigenvalues in −Λ.

(2) V T
1Λ

V2Λ =V T
2Λ

V1Λ.

These properties of the eigenspaces of (E,H) is crucially used in the sequel. Now we develop
the results required for the proof of Theorem 2.30. The first step in the proof of Theorem 2.30
is the following theorem:

Disconjugacy of an eigenspace of the Hamiltonian matrix pair

Theorem 2.32. Let V1Λ be as defined in Theorem 2.30. Then, V1Λ is full-column rank.

Since VeΛ = col(V1Λ,V2Λ,V3Λ) is a basis of the eigenspace of (E,H), in terms of Defini-
tion 2.22, Theorem 2.32 establishes that the subspace imgVeΛ is disconjugate. We develop the
proof for the disconjugacy of imgVeΛ in the next section.

2.4.1 Disconjugacy of imgVeΛ

In this section we prove Theorem 2.32 using a few auxiliary results. The main result that
helps us to prove Theorem 2.32 is the claim that the good slow subspace of ΣHam, i.e., Owg =

img
[

V1Λ

V2Λ

]
can be decomposed into two subspaces. Such a decomposition not only helps us in

proving Theorem 2.32 but also provides significant insight into the computation of the optimal
cost of a singular LQR problem. One of the subspaces obtained during such a decomposition
is linked with the good slow subspace of the system Σ itself. Hence, we first reveal the link
between the good slow subspace of the system Σ and the good slow subspace of ΣHam in Lemma
2.34 using a well-known proposition from [Won85] next.

Proposition 2.33. [Won85, Lemma 5.8] Define the family

BΣ :=
{
V (Rn |∃F ∈ R1×n such that (A+bF)V ⊆ V ,QV = 0,σ((A+bF)|V (C−

}
.

Then, BΣ has a unique supremal element.

Note that the unique supremal element of BΣ is indeed the largest good (A,b)-invariant
subspace in the kernel of Q. In the next lemma we establish the relation between this subspace
and the subspace Owg = img

[
V1Λ

V2Λ

]
of ΣHam.
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Relation between the supremal element of BΣ and the good slow subspace of ΣHam

Lemma 2.34. Let Vg := supBΣ. Suppose Vg ∈Rn×g be such that Vg is full column-rank

and imgVg = Vg. Define VgHam := img
[ Vg

0n,g

]
. Let V1Λ,V2Λ be as defined in Theorem

2.30. Then, VgHam ⊆ img
[

V1Λ

V2Λ

]
.

Proof: Recall Owg = img
[

V1Λ

V2Λ

]
. Since Vg = imgVg ∈BΣ, there exists F ∈ F(Vg) such that

(A+bF)Vg =VgJg, where Jg = (A+bF)|Vg
and σ(Jg)(C−. Define V3g := FVg. Then, A 0 b

−Q −AT 0
0 bT 0


 Vg

0n,g
V3g

=
In 0 0

0 In 0
0 0 0


 Vg

0n,g
V3g

Jg⇒

[
Â b̂
ĉ 0

] Vg

0n,g
V3g

=[I2n 0
0 0

] Vg

0n,g
V3g

Jg. (2.40)

Thus, σ(Jg) ( σ(E,H). Using Proposition 2.10 in equation (2.40) we can infer that VgHam =

img
[ Vg

0n,g

]
is an (Â, b̂)-invariant subspace. Further, using the fact that ĉ

[ Vg
0n,g

]
= 0 in equation

(2.40), it is evident that VgHam is an (Â, b̂)-invariant subspace inside ker ĉ with σ(Jg) ( C−.
Since Owg is the largest good (Â, b̂)-invariant subspace inside ker ĉ, we have VgHam ⊆Owg. �

Since img
[ Vg

0n,g

]
⊆ img

[
V1Λ

V2Λ

]
and img

[
V1Λ

V2Λ

]
is the largest good (Â, b̂)-invariant subspace inside

ker ĉ, it is evident that img
[ Vg

0n,g

]
can be extended to img

[
V1Λ

V2Λ

]
. The next lemma deals with

such an extension.
Decomposition of the good slow subspace of the Hamiltonian system ΣHam

Lemma 2.35. Let V1e,V2e ∈ Rn×(n−g) be such that
[ Vg V1e

0n,g V2e

]
is full column-rank and

img
[ Vg V1e

0n,g V2e

]
=Owg, where Owg = img

[
V1Λ

V2Λ

]
with V1Λ,V2Λ as defined in Theorem 2.30

and Vg is as defined in Lemma 2.34. Then, the following statements are true

(1) V2e is full column-rank.

(2)
[
Vg V1e

]
is full column-rank.

Proof: (1): Since
[

Vg V1e
0 V2e

]
is (Â, b̂)-invariant inside ker ĉ, by Proposition 2.10 we have

Â

(
img

[
Vg V1e

0 V2e

])
( img

[
Vg V1e

0 V2e

]
+img b̂ and ĉ

(
img

[
Vg V1e

0 V2e

])
= {0}

⇒ Â

(
img

[
V1e

V2e

])
( img

[
Vg V1e

0 V2e

]
+img b̂ and ĉ

(
img

[
V1e

V2e

])
= {0}.

Hence, there must exist V3e ∈ R1×(n−g),Γ12 ∈ Rg×(ns−g) and Γ22 ∈ R(ns−g)×(ns−g) such that

Â

[
V1e

V2e

]
=

[
Vg

0

]
Γ12 +

[
V1e

V2e

]
Γ22− b̂V3e and ĉ

[
V1e

V2e

]
= 0. (2.41)
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Now writing equation (2.41) and equation (2.40) together, we have A 0 b
−Q −AT 0
0 bT 0


Vg V1e

0 V2e

V3g V3e

=

In 0 0
0 In 0
0 0 0


Vg V1e

0 V2e

V3g V3e

[Jg Γ12

0 Γ22

]
. (2.42)

Since img
[ Vg V1e

0n,g V2e

]
= Owg, from equation (2.42) we have σ

([
Jg Γ12
0 Γ22

])
( C−⇒ σ(Γ22) (

C−. From equation (2.42) we have the following equations:

AV1e+bV3e =VgΓ12 +V1eΓ22, (2.43)

−QV1e−ATV2e =V2eΓ22, (2.44)

bTV2e = 0. (2.45)

From Statement (2) of Proposition 2.31, we can infer that[
0

V T
2e

][
Vg V1e

]
=

[
V T
g

V T
1e

][
0 V2e

]
⇒

V T
2eVg = 0,

V T
2eV1e =V T

1eV2e.
(2.46)

Now pre-multiplying equations (2.43) and equation (2.44) with V T
2e and −V T

1e, respectively and
adding, we get

V T
2eAV1e+V T

2ebV3e+V T
1eQV1e+V T

1eATV2e =V T
2eVgΓ12 +V T

2eV1eΓ22−V T
1eV2eΓ22. (2.47)

Using equation (2.45), equation (2.46) in equation (2.47) , we have

V T
2eAV1e+V T

1eQV1e+V T
1eATV2e = 0. (2.48)

To the contrary, let us assume V2e is not full column-rank. Therefore, there exists a nonzero
w ∈ R(ns−g) such that V2ew = 0. Pre- and post-multiplying equation (2.48) with wT and w,
respectively and using V2ew = 0, we get wTV T

1eQV1ew = 0. Since Q> 0, we must have

QV1ew = 0⇒ kerV2e ⊆ ker(QV1e). (2.49)

Post-multiplying equation (2.44) with w, we have

−QV1ew−ATV2ew =V2eΓ22w⇒−ATV2ew =V2eΓ22w⇒ kerV2e is Γ22-invariant. (2.50)

Therefore, from equation (2.50) it follows that there exists a full column-rank matrix T̃ ∈
R(ns−g)×• such that V2eT̃ = 0 and Γ22T̃ = T̃ Γ̃,σ(Γ̃) ⊆ σ(Γ22) ( C−. Further, from equation
(2.49), we must have QV1eT̃ = 0. Post-multiplying equation (2.43) by T̃ , we get

AV1eT̃ +bV3eT̃ =VgΓ12T̃ +V1eΓ22T̃ ⇒ AV1eT̃ +bV3eT̃ =VgΓ12T̃ +V1eT̃ Γ̃. (2.51)

Using Proposition 2.10 combined with the fact that imgVg is a good (A,b)-invariant subspace

of the system and σ(Γ̃) ( C−, we infer that img
[
Vg V1eT̃

]
is also a good (A,b)-invariant
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subspace. Further, Q
[
Vg V1eT̃

]
= 0. Thus, img

[
Vg V1eT̃

]
∈BΣ, where BΣ is as defined

in Proposition (2.33). Since Vg = supBΣ and imgVg = Vg, we must have img
[
Vg V1eT̃

]
=

Vg. Therefore, there exist α1 ∈ Rg and a nonzero α2 ∈ R• such that Vgα1 +V1eT̃ α2 = 0, i.e.,[
Vg V1e
0 V2e

] [
α1

T̃ α2

]
=

[
Vgα1+V1eT̃ α2

V2eT̃ α2

]
= 0. Note that since T̃ is full column-rank, T̃ α2 6= 0. Thus,

we have a nonzero vector
[

α1
T̃ α2

]
inside ker

[
Vg V1e
0 V2e

]
. This is a contradiction to the fact that[

Vg V1e
0 V2e

]
is full column-rank. Thus, V2e must be full column-rank.

(2): To the contrary, assume that
[
Vg V1e

]
is not full column-rank. Then, there exist

β1 ∈ Rg and β2 ∈ R(n−g) such that
[

β1
β2

]
6= 0 and Vgβ1 +V1eβ2 = 0.

Now pre-multiplying equation (2.43) with V T
2e and adding it to the transpose of equation

(2.44) post-multiplied with V1e, we have

V T
2eAV1e+V T

2ebV3e−V T
1eQV1e−V T

2eAV1e =V T
2eVgΓ12 +V T

2eV1eΓ22 +Γ
T
22V T

2eV1e. (2.52)

Using equation (2.45) and equation (2.46) in equation (2.52), we have

Γ
T
22V T

2eV1e+V T
2eV1eΓ22 =−V T

1eQV1e. (2.53)

Let us assume that there exists a nonzero y ∈ ker(V T
2eV1e). Pre- and post-multiplying (2.53) by

yT and y, respectively and using equation (2.46) we have

yT
Γ

T
22V T

2eV1ey+ yTV T
2eV1eΓ22y =−yTV T

1eQV1ey⇒ yTV T
1eQV1ey = 0⇒ QV1ey = 0. (2.54)

Now, post-multiplying equation (2.53) with y and using equation (2.54), we have

V T
2eV1eΓ22y = 0⇒ ker(V T

2eV1e) is Γ22-invariant. (2.55)

using equation (2.55) and the fact that σ(Γ22)(C−, we have

∃ a nonzero q ∈ C(n−g) such that Γ22q = µq and V T
2eV1eq = 0, where µ ∈ C−. (2.56)

Post-multiplying equation (2.44), by q, we have −QV1eq+ ATV2eq = V2eΓ22q⇒ ATV2eq =

µV2eq. If V2eq is nonzero, then it is a left-eigenvector of A. However, from equation (2.45)
we can infer that (V2eq)T b = 0. This means that the system (A,b) is uncontrollable. This is a
contradiction. Therefore, V2eq must be a zero vector. Now from the fact that V2e is full column-
rank (Statement (1) of this lemma), it is evident that q = 0, which contradicts equation (2.56).
Thus, our initial assumption that there exists a nonzero vector y in ker(V T

2eV1e) is not true.
Hence, ker(V T

2eV1e) = {0}.
Recall that we have assumed Vgβ1 +V1eβ2 = 0. Pre-multiplying this equation with V T

2e,
we have V T

2eVgβ1 +V T
2eV1eβ2 = 0. Using equation (2.46) and the fact that ker(V T

2eV1e) = {0},
we have V T

2eV1eβ2 = 0⇒ β2 = 0. Thus, we have Vgβ1+V1eβ2 = 0⇒Vgβ1 = 0. However, since

Vg is full column-rank, we must have β1 = 0. This is a contradiction to the fact that
[

β1
β2

]
6= 0.
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Hence,
[
Vg V1e

]
is full column-rank. �

Now using Lemma 2.35, we proceed to prove Theorem 2.32.
Proof of Theorem 2.32: Since img

[
V1Λ

V2Λ

]
= img

[
Vg V1e
0 V2e

]
, where Vg ∈ Rn×g, and V1e,V2e ∈

Rn×(ns−g) is as defined in Lemma 2.35, we must have imgV1Λ = img
[
Vg V1e

]
. Note that the

number of columns of V1Λ and
[
Vg V1e

]
are the same. Hence, from Statement (2) of Lemma

2.35, it follows that V1Λ is full column-rank. �

Since V1Λ is full column-rank, it follows from Definition 2.22 that imgVeΛ is disconjugate. This
property of disconjugacy is crucially used to prove Theorem 2.30. Apart from this property,
there are a few more identities that are required to prove Theorem 2.30. We present these
identities as two lemmas in the next section. However, before progressing to the next section,
we present a figure next (Figure 2.2) that shows the decomposition of the state-space of ΣHam

in terms of the subspaces we introduced in this section.

Dimension: ns
Bad slow subspace

Dimension: ns

img
[V1e

V2e

]⊕img
[Vg

0

]
⊕Good slow subspace: img

[
V1Λ

V2Λ

]
Slow subspace of dimension 2ns Fast subspace of dimension 2nf⊕

R2n: State-space of the Hamiltonian system

Figure 2.2: A direct-sum decomposition of the state-space of the Hamiltonian system ΣHam

2.4.2 Auxiliary results for the proof of Theorem 2.30

In this section we present two lemmas that establish a few identities involving the system matri-
ces (A,b), Markov parameters of ΣHam, cost matrix Q and a solution K of the LQR LMI (2.9).
These identities are crucially used in the proof of Theorem 2.30.

Identities involving the Markov parameters of the Hamiltonian system and Q

Lemma 2.36. Let (Â, b̂, ĉ), Q and nf be as defined in Theorem 2.30. Then, the following
statements are true:

(1) ĉÂkb̂ = 0 for k ∈ {0,1, . . . ,2(nf−1)}.

(2) QA`b = 0 for ` ∈ {0,1, . . . ,nf−2}.

(3) Â`b̂ = col(A`b,0) and ĉÂ` =
[
0 (−1)`(A`b)T

]
for ` ∈ {0,1, . . . ,nf−1}.

Proof: (1): We define P := Â, L := b̂, M := ĉ, U1 := E, and U2 := H in Lemma 2.23. Further,
we have degdet(sE −H) = 2ns. Therefore, Ns = 2ns and Nf = N− Ns = 2n− 2ns = 2nf.
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Therefore from Lemma 2.23 Statement (1) immediately follows.
(2) and (3): Now, we use induction to prove these statements.
Base case: (`= 0) Using Statement (1) of this lemma we have

ĉÂb̂ = 0⇒
[
01,n bT

][ A 0
−Q −AT

][
b

0n,1

]
= bT Qb = 0. (2.57)

Since Q > 0, using the property of positive-semidefinite matrices in equation (2.57) we get
Qb = 0. Further, b̂ = col(b,0) and ĉ =

[
0 bT

]
by definition.

Induction step: Let QA`b = 0n,1, Â`b̂ = col(A`b,0n,1), and ĉÂ` =
[
01,n (−1)`bT (AT )`

]
,

where ` < nf−2. We prove that

QA`+1b = 0n,1, Â`+1b̂ = col(A`+1b,0n,1), and ĉÂ`+1 =
[
01,n (−1)`+1bT (AT )`+1

]
.

Note that

Â`+1b̂ =

[
A 0

−Q −AT

][
A`b

0n,1

]
=

[
A`+1b

−QA`b

]
=

[
A`+1b

0n,1

]
,

ĉÂ`+1 =
[
01,n (−1)`(A`b)T

][ A 0

−Q −AT

]
=
[
(−1)`(QA`b)T (−1)`+1(A`+1b)T

]
=
[
01,n (−1)`+1(A`+1b)T

]
.

Since ` < nf− 2⇒ 2`+ 3 < 2nf− 1, using Statement (1) of this lemma and the induction
hypothesis, we have

ĉÂ2`+3b̂ = 0⇒ (ĉÂ`+1)Â(Â`+1b̂) = 0⇒
[
0 (−1)`+1(A`+1b)T

][ A 0
−Q −AT

][
A`+1b

0

]
= 0

⇒ (A`+1b)T Q(A`+1b) = 0⇒ QA`+1b = 0 (Since Q> 0).

This completes the proof of Statement (2), and Statement (3) for ` ∈ {0,1, . . . ,nf−2}.
In what follows we complete the proof of Statement (3) by proving the identity for the

case `= nf−1. Using the fact that QAnf−2b = 0 from Statement (2) of this lemma, we have

Ânf−1b̂ =

[
A 0
−Q −AT

][
Anf−2b

0n,1

]
=

[
Anf−1b
−QAnf−2b

]
=

[
Anf−1b

0n,1

]
.

Similarly,

ĉÂnf−1 =
[
(−1)nf−1(Anf−2b)T Q (−1)nf−1(Anf−1b)T

]
=
[
01,n (−1)nf−1(Anf−1b)T

]
.

This completes the proof of Statement (3) of this lemma. �

Algebraic relations satisfied by the solutions of an LQR LMI

Lemma 2.37. Let K be any solution of the singular LQR LMI (2.9) with degdet(sE−
H) = 2ns and nf := n−ns, where (E,H) are as defined in Theorem 2.30. Then, for any
α ∈ {1, . . . ,nf−1}, KAαb = 0.
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Proof: We prove this using induction and Lemma 2.36.
Base case: (α = 0) Since K is a solution of the LQR LMI (2.9), Kb = 0 is trivially true.
Inductive step: Suppose α 6 nf− 1. Assume KA(α−1)b = 0, we show that KAαb = 0 . Pre-
and post-multiplying L (K) := AT K +KA+Q by (A(α−1)b)T and A(α−1)b, respectively, we
get (A(α−1)b)T L (K)(A(α−1)b) 6 0. Opening the brackets and using the inductive hypothesis
this inequality becomes (A(α−1)b)T Q(A(α−1)b) 6 0. Further, using Statement (1) of Lemma

(2.36) in this inequality, we get
(

A(α−1)b
)T

Q
(

A(α−1)b
)
= 0⇒ L (K)A(α−1)b = 0 (Since

L (K) > 0). Expanding this equation and using inductive hypothesis with Statement (1) of
Lemma 2.36 gives KAαb = 0. �

Now that we have developed all the crucial results required to prove Theorem 2.30, in the
ensuing section we prove Theorem 2.30.

2.4.3 Proof of Theorem 2.30

Proof of Statement (1) of Theorem 2.30: Partition W =:
[

W1
W2

]
, where W1,W2 ∈ Rn×nf . Using

Statement (3) of Lemma 2.36, it is evident that

W =

[
W1

W2

]
=
[
b̂ Âb̂ · · · Ânf−1b̂

]
=

[
b Ab · · · Anf−1b
0 0 · · · 0

]
⇒

W1=
[
b Ab · · · Anf−1b

]
,

W2=0n,nf.

(2.58)

Therefore, XΛ =
[
XΛ W

]
=

[
V1Λ W1

V2Λ 0n,nf

]
=

[
X1Λ

X2Λ

]
. Then, we need to prove that X1Λ =[

V1Λ W1

]
is invertible.

Note that since V1Λ is full column-rank (Theorem 2.32), there exists F ∈ R1×n such that
V3Λ = FV1Λ. Thus, from equation (2.39), (A+bF)V1Λ =V1ΛΓ. Define

W1F :=
[
b (A+bF)b · · · (A+bF)nf−1b

]
.

Then, clearly imgW1 = imgW1F. Since Σ is controllable, W1 is full column-rank⇔W1F is also
full column-rank. Thus, proving X1Λ is invertible is equivalent to proving X̃1Λ :=

[
V1Λ W1F

]
is invertible.

Now, we extend the columns of V1Λ to form a basis of Rn, say B. Without loss of gen-
erality, we assume that the matrices A,b are represented in the basis B. Since V1Λ is (A,b)-

invariant, in the new basis (A+ bF) must have the following structure A+ bF =
[

Ā11 Ā12
0 Ā22

]
,

where Ā11 ∈ Rns×ns and Ā22 ∈ R(n−ns)×(n−ns). Conforming to the partition in A+bF , we par-

tition b =:
[

b̄1
b̄2

]
. Note V1Λ in the basis B is of the form

[
Ins
0

]
. Further, W1F in this new basis B

has the following structure

W1F =

[
b̄1 ? · · · ?

b̄2 Ā22b̄2 · · · Ānf−1b̄2

]
, where ? are suitable matrices with elements from R.
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Since the system is controllable, we have (A,b) controllable ⇔ (A + bF,b) controllable ⇒
(Ā22, b̄2) is controllable. Therefore, T :=

[
b̄2 Ā22b̄2 · · · Ānf−1b̄2

]
∈Rnf×nf is a nonsingular

matrix. Now, note that the matrix X̃1Λ =
[
V1Λ W1F

]
in the basis B takes the form

[
Ins ?
0 T

]
.

Thus, X̃1Λ is a block upper-triangular matrix with the diagonal blocks Ins and T being nonsin-
gular. Therefore, X̃1Λ is invertible and hence X1Λ is invertible. �

Proof of Statement (2) of Theorem 2.30: To prove X2ΛX−1
1Λ

= (X2ΛX−1
1Λ

)T is equivalent to
proving XT

1Λ
X2Λ = XT

2Λ
X1Λ. Hence instead of proving X2ΛX−1

1Λ
= (X2ΛX−1

1Λ
)T we prove that

XT
1Λ

X2Λ−XT
2Λ

X1Λ = 0. Now, using equation (2.58) to evaluate XT
1Λ

X2Λ−XT
2Λ

X1Λ, we get

XT
1ΛX2Λ−XT

2ΛX1Λ =

[
V T

1Λ

W T
1

][
V2Λ 0n,nf

]
−
[

V T
2Λ

0nf,n

][
V1Λ W1

]
=

[
V T

1Λ
V2Λ−V T

2Λ
V1Λ −V T

2Λ
W1

W T
1 V2Λ 0nf,nf

]
. (2.59)

From Proposition 2.31, we have V T
1Λ

V2Λ =V T
2Λ

V1Λ. Hence, to prove XT
1Λ

X2Λ−XT
2Λ

X1Λ = 0, we
need to prove that V T

2Λ
W1 = 0. From equation (2.39), we have

−QV1Λ−ATV2Λ =V2ΛΓ⇒V T
1ΛQ+V T

2ΛA =−Γ
TV T

2Λ. (2.60)

We first prove that V T
2Λ

Akb = 0 for k ∈ {0,1, . . . ,nf−1} using mathematical induction.
Base case: (k = 0) V T

2Λ
b = 0 follows from equation (2.39).

Induction step: Let V T
2Λ

Akb = 0 for k < nf−1. We prove that V T
2Λ

Ak+1b = 0. Post-multiplying
equation (2.60) with Akb gives V T

1Λ
QAkb +V T

2Λ
Ak+1b = −ΓTV T

2Λ
Akb. Since k < nf− 1, we

know that QAkb = 0 (Lemma 2.36). This equation along with the inductive hypothesis imply
that V T

2Λ
Ak+1b = 0. Hence, by mathematical induction, we have proved that V T

2Λ
Akb = 0 for

k ∈ {0,1,2, . . . ,nf−1}. In other words, we proved that

V T
2Λ

[
b Ab · · · Anf−1b

]
= 0⇒V T

2ΛW1 = 0. (2.61)

Thus, from equation (2.59), we have XT
1Λ

X2Λ = XT
2Λ

X1Λ. Therefore, X2ΛX−1
1Λ

is symmetric. �

Proof of Statement (3) of Theorem 2.30: Define L (Kmax) := AT Kmax+KmaxA+Q. Evalu-
ating XT

1Λ
L (Kmax)X1Λ, we get

XT
1ΛL (Kmax)X1Λ =

[
V T

1Λ
L (Kmax)V1Λ V T

1Λ
L (Kmax)W1

W T
1 L (Kmax)V1Λ W T

1 L (Kmax)W1

]
. (2.62)

Note that

KmaxV1Λ = X2ΛX−1
1Λ

V1Λ =
[
V2Λ W2

][
V1Λ W1

]−1
V1Λ =V2Λ

KmaxW1 =
[
V2Λ W2

][
V1Λ W1

]−1
W1 =W2 = 0 (From equation (2.58)).

Using the fact that KmaxV1Λ =V2Λ and evaluating V T
1Λ

L (Kmax)V1Λ gives

V T
1ΛL (Kmax)V1Λ =V1Λ(AT Kmax+KmaxA+Q)V1Λ =

[
V T

2Λ
−V T

1Λ

][ A 0

−Q −AT

][
V1Λ

V2Λ

]
(2.63)
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Using equation (2.39) and Proposition 2.31 in equation (2.63), we have

V T
1ΛL (Kmax)V1Λ =

[
V T

2Λ
−V T

1Λ

]([V1Λ

V2Λ

]
Γ−

[
b
0

]
V3Λ

)
=−V T

2ΛbV3Λ = 0. (2.64)

Using W2 = 0 to evaluate V T
1Λ

L (Kmax)W1 gives

V T
1ΛL (Kmax)W1 =V T

2ΛAW1 +V T
1ΛQW1. (2.65)

Post-multiplying equation (2.60) by W1 and using it in equation (2.65) gives

V T
1ΛL (Kmax)W1 =V T

1ΛQW1 +V T
2ΛAW1 =−Γ

TV T
2ΛW1. (2.66)

From equation (2.61), we have V T
2Λ

W1 = 0. Thus, V T
1Λ

L (Kmax)W1 = 0.
Since KmaxW1 = 0, we must have

W T
1 L (Kmax)W1 =W T

1 AT KmaxW1 +W T
1 KmaxAW1 +W T

1 QW1 =W T
1 QW1.

Now, using Statement (1) of Lemma 2.36, we have

W T
1 QW1 =

[
0(nf−1),(nf−1) 0(nf−1),1

01,(nf−1) (Anf−1b)T QAnf−1b

]
. (2.67)

Thus, using equation (2.67) in equation (2.62), we have

XT
1ΛL (Kmax)X1Λ =

[
0(n−1),(n−1) 0(n−1),1

01,(n−1) (Anf−1b)T QAnf−1b

]
. (2.68)

Since Q > 0, we have (Anf−1b)T QAnf−1b > 0. Therefore, XT
1Λ

L (Kmax)X1Λ > 0. Since X1Λ is
invertible and L (Kmax) is symmetric, by Sylvester’s law of inertia2 L (Kmax) > 0. Next using
Statement (2) of this theorem and the fact that V T

2Λ
b = 0 from equation (2.39) we have

Kmaxb = X2ΛX−1
1Λ

b = (X−1
1Λ

)T XT
2Λb = (X−1

1Λ
)T

[
V T

2Λ

0

]
b = 0. (2.69)

Thus, Kmax is a solution of the LQR LMI (2.9). From equation (2.68), we therefore infer that
rank of L (Kmax) is either 0 or 1.

Note that rank(L (Kmax)) = 0 is equivalent to L (Kmax) = 0, i.e., AT Kmax+KmaxA+Q= 0
and Kmaxb = 0. The equations AT K +KA+Q = 0 and Kb = 0 are the constrained generalized
continuous ARE (CGCARE) corresponding to the LQR Problem 2.21 (see [FN14], [FN18] for

2The inertia of a matrix A ∈Rn×n is as the set {n+,n0,n−}, where n+ and n− are the number of eigenvalues of
A with positive and negative real parts, respectively (counted with multiplicity) and n0 is the number of eigenvalues
of A on the imaginary axis (counted with multiplicity).
Sylvester’s law of inertia: Consider two symmetric matrices A,B ∈ Rn×n. Then, there exists a nonsingular matrix
P ∈ Rn×n such that A = PT BP if and only if the inertia of A and B are the same. [Ber08, Corollary 5.4.7]
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more on CGCARE). Interestingly, in Chapter 3 we show that a necessary condition for solvabil-
ity of CGCARE is det(sE−H) = 0. Since in this theorem det(sE−H) 6= 0 by assumption,
CGCARE is not solvable here. This implies that L (K) = 0, i.e., rank(L (K)) = 0 is not pos-
sible in our case. Therefore, the minimum rank that can be attained by LQR LMI (2.9) is 1 and
L (Kmax) attains this rank. �

Proof of Statement (4) and (5) of Theorem 2.30: Note that proving Statement (4) of this theorem
is equivalent to proving that K−Kmax 6 0 for all K that satisfies the LQR LMI (2.9). We prove
this in two steps. First, we prove that for V1Λ defined in the theorem, ∆ := V T

1Λ
(K−Kmax)V1Λ

satisfies a suitable Lyapunov inequality (see equation (2.76) below). Then, using this Lyapunov
inequality we finally show that K−Kmax 6 0 for all K that satisfies the LQR LMI (2.9).

Step 1: Note that for all (x,u) that satisfies d
dt x = Ax+bu, evaluation of d

dt (x
T Kx)+ xT Qx

results in the following equation:

d
dt
(xT Kx)+ xT Qx = ẋT Kx+ xT Kẋ+ xT Qx

= (Ax+bu)T Kx+ xT K(Ax+bu)+ xT Qx

=

[
x
u

]T [
AT K +KA+Q Kb

bT K 0

][
x
u

]
, for all t ∈ R. (2.70)

Since K is a solution of the LQR LMI (2.9), using the fact that
[

AT K+KA+Q Kb
bT K 0

]
> 0 in equa-

tion (2.70), we have

d
dt
(xT Kx)+ xT Qx =

[
x
u

]T [
AT K +KA+Q Kb

bT K 0

][
x
u

]
> 0, for all t ∈ R. (2.71)

From equation (2.39), we know that AV1Λ + bV3Λ = V1ΛΓ. Further, since V1Λ is full
column-rank (Theorem 2.32), we infer that there exists F ∈R1×ns such that FV1Λ =V3Λ. There-
fore, we have (A+ bF)V1Λ = V1ΛΓ. Thus, corresponding to an initial condition x0 = V1Λβ ,
where β ∈ Rns , x̄s :=V1ΛeΓtβ , ūs := FV1ΛeΓtβ must satisfy d

dt x = Ax+bu. Using x̄s in equa-
tion (2.71), we have

d
dt
(x̄T

s Kx̄s)+ x̄T
s Qx̄s > 0⇒ d

dt
(x̄T

s Kx̄s)>−x̄T
s Qx̄s, for all t ∈ R. (2.72)

Note that ˙̄xs = V1ΛΓeΓtβ = (A+ bF)V1ΛeΓtβ (Since (A+ bF)V1Λ = V1ΛΓ). Since Kmax is a
solution of the LQR LMI (2.9), using the fact that Kmaxb = 0 we have

d
dt
(x̄T

s Kmaxx̄s)+ x̄T
s Qx̄s = ˙̄xs

T Kmaxx̄s+ x̄T
s Kmax ˙̄xs+ x̄T

s Qx̄s

= β
T eΓT tV T

1Λ(A+bF)T KmaxV1ΛeΓt
β +β

T eΓT tV T
1ΛKmax(A+bF)V1ΛeΓT t

β + x̄T
s Qx̄s

= β
T eΓT tV T

1Λ(A
T Kmax+KmaxA+Q)V1ΛeΓt

β , for all t ∈ R. (2.73)

From equation (2.64), it is evident that the right hand side of equation (2.73) is 0. Therefore,

d
dt

(
x̄T
s Kmaxx̄s

)
=−x̄T

s Qx̄s, for all t ∈ R. (2.74)
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Subtracting equation (2.74) from inequality (2.72) gives d
dt

(
x̄T
s (K−Kmax)x̄s

)
= ˙̄xs

T (K−
Kmax)x̄s+ x̄T

s (K−Kmax) ˙̄xs > 0, for all t ∈R. On using x̄s =V1ΛeΓtβ and ˙̄xs =V1ΛΓeΓtβ in this
inequality, we get

(V1ΛeΓt
Γβ )T (K−Kmax)(V1ΛeΓt

β )+(V1ΛeΓt
β )T (K−Kmax)(V1ΛeΓt

Γβ )> 0, for all t ∈ R
(2.75)

Since inequality (2.75) is true for all t, evaluating it at t = 0, in particular, we get β T (ΓTV T
1Λ
(K−

Kmax)V1Λ +V T
1Λ
(K−Kmax)V1ΛΓ)β = β T (ΓT ∆Λ +∆ΛΓ)β > 0, where ∆Λ :=V T

1Λ
(K−Kmax)V1Λ.

Since this inequality is true for all β ∈ Rns , we have

Γ
T

∆Λ +∆ΛΓ> 0, where ∆Λ =V T
1Λ(K−Kmax)V1Λ. (2.76)

This ends the first step of the proof.

Step 2: Note that since X1Λ is nonsingular and K−Kmax is symmetric, proving K−Kmax6

0 is equivalent to proving that XT
1Λ
(K−Kmax)X1Λ 6 0 (by Sylvester’s law of inertia). Hence, we

prove XT
1Λ
(K−Kmax)X1Λ 6 0 in the sequel.

Note that X1Λ =
[
V1Λ W1

]
, where W1 is as defined in equation (2.58). On evaluating

XT
1Λ
(Kmax−K)X1Λ, we therefore have

XT
1Λ(K−Kmax)X1Λ =

[
V T

1Λ
(K−Kmax)V1Λ V T

1Λ
(K−Kmax)W1

W T
1 (K−Kmax)V1Λ W T

1 (K−Kmax)W1

]
. (2.77)

Since W1 =
[
b Ab · · ·Anf−1b

]
(equation (2.58)), we have from Lemma 2.37, KW1 = 0 and

KmaxW1 = 0. Therefore, (K−Kmax)W1 = 0. Thus, from equation (2.77) it follows that

XT
1Λ(K−Kmax)X1Λ =

[
V T

1Λ
(K−Kmax)V1Λ 0

0 0

]
=

[
∆Λ 0
0 0

]
, (2.78)

Since σ(Γ)(C−, from equation (2.76), we have ∆Λ 6 0. Using this negative-semidefiniteness
property of ∆Λ in equation (2.78), we infer XT

1Λ
(K −Kmax)X1Λ 6 0 ⇔ K −Kmax 6 0. This

completes the proof of Statement (4) of the theorem.

Note that 0 is a solution of the LQR LMI (2.9). Thus, from Statement (4) of Theorem
(2.30) we must have 06 Kmax. Thus, Statement (5) of the theorem is proved. �

Interestingly, from Step 1 of the Proof of Statement (4) of Theorem 2.30 above, we can infer that
the difference between the maximal rank-minimizing solution Kmax of the LQR LMI (2.9) with
any other solution K of the LQR LMI when restricted to the space imgV1Λ satisfies a Lyapunov
inequality of the form given in equation (2.76). We present this as a lemma next. For the ease
of exposition we call the difference K−Kmax the maximal gap of K (see [Wil71] for more on
the use of the term gap).



46 Chapter 2. Maximal rank-minimizing solution of an LQR LMI: single-input case

Maximal gap of K restricted to imgV1Λ satisfy a Lyapunov inequality

Lemma 2.38. Consider the singular LQR Problem 2.21. Let V1Λ,Kmax, and Γ be as
defined in Theorem 2.30. Assume K to be any solution of the LQR LMI (2.9). Define
∆Λ :=V T

1Λ
(K−Kmax)V1Λ ∈Rns×ns . Then, ∆Λ satisfies the following Lyapunov inequality:

Γ
T

∆Λ +∆ΛΓ> 0.

Proof: The proof follows from Step 2 of the proof of Statement (4) of Theorem 2.30. �

In order to demonstrate that Theorem 2.30 finds the maximal rank-minimizing solution
of the LQR LMI (2.3), we revisit Example 2.20 that we have previously failed to solve using
Proposition 2.19.

Example 2.39. Note that in Example 2.20, we have n = 3 and ns = 1. Thus, nf = n−ns = 2.
Therefore, using Theorem 2.30, we have

[
VΛ W

]
=

[
V1Λ b Ab
V2Λ 0 0

]
=

 1 0 0
1 1 0
−2 0 1

2 0 0
0 0 0
0 0 0

⇒
X1Λ =

[ 1 0 0
1 1 0
−2 0 1

]
X2Λ =

[
2 0 0
0 0 0
0 0 0

]
.

Therefore, Kmax = X2ΛX−1
1Λ

=

[
2

0
0

]
. It can be verified that LQR LMI (2.9) evaluated at

Kmax gives L (Kmax) :=

[
4 0 2 0
0 0 0 0
2 0 1 0
0 0 0 0

]
> 0. Further, rank(Kmax) = 1. This is the minimum rank

achievable by the LQR LMI (2.9) (see proof of Statement (3) of Theorem 2.30 for the justification
of the LQR LMI’s minimum rank being 1 in this case). Further, Kmax is also the maximal
solution of the LQR LMI (2.9) (see proof of Statement (4) of Theorem 2.30 in Section 2.4.3 for a
justification of this claim). Thus, from the example it is clear that Theorem 2.30 indeed provides
a method to compute the maximal rank-minimizing solution of an LQR LMI corresponding to a
singular LQR problem.

Recall from Statement (1) of Theorem 2.30 and equation (2.58) that X1Λ can be written as

XΛ =

[
X1Λ

X2Λ

]
=

[
V1Λ W1

V2Λ 0n,nf

]
.

Thus, we have X1Λ =
[
V1Λ W1

]
and X2Λ =

[
V2Λ 0n,nf

]
. Further, from Lemma 2.35, we know

that img
[ Vg V1e

0n,g V2e

]
= img

[
V1Λ

V2Λ

]
and

[
Vg V1e

]
is full column-rank. Hence, the matrix X1Λ,

without loss of generality, is given by X1Λ =
[
Vg V1e W1

]
and the corresponding X2Λ matrix

is then X2Λ =
[
0n,g V2e 0n,nf

]
. Since X1Λ is invertible (Statement (1) of Theorem 2.30), it is

evident that the columns of X1Λ can be assumed to be a basis for Rn. Hence, the state-space of
the system Σ can be decomposed in the following subspaces:



2.4 Maximal rank-minimizing solution of LQR LMI: single-input case 47

⊕W := imgW1 V := imgV1Λ

Vg := imgVg ⊕ Ve := imgV1e

Rn: State-space of a system

Figure 2.3: A direct-sum decomposition of the state-space Rn

Note that the subspace Vg in Figure 2.3 is the g-dimensional good slow subspace of the
system Σ. Further, the dimension of W is nf and that of Ve is n− (g+nf). From Figure 2.3, it
is evident that any initial condition x0 ∈ Rn of the system Σ can be decomposed as

x0 =: xgs+ x0f+ xes, where xgs ∈ Vg,x0f ∈=: W , and xes ∈ Ve. (2.79)

This leads to some interesting facts about the optimal cost of a singular LQR problem. The first
among them is as follows:

Optimal cost of an LQR problem

Corollary 2.40. Consider the LQR Problem 2.21 and let Kmax be the maximal rank-
minimizing solution of the corresponding LQR LMI (2.9). Assume x0 =: xgs+ x0f+ xes
to be an initial condition of the system Σ as defined in equation (2.79). Then the following
statements hold:

(1) xT
gsKmaxxgs = 0.

(2) xT
0fKmaxx0f = 0.

(3) The optimal cost of the LQR problem is xT
esKmaxxes.

Proof: (1): Let xgs :=Vgα , where α ∈ Rg. Note that

Kmaxxgs = KmaxVgα = X2ΛX−1
1Λ

Vgα =
[
0n,g V2e 0n,f

][
Vg V1e W1

]−1
Vgα = 0. (2.80)

Therefore, xT
gsKmaxxgs = αTV T

g KmaxVgα = 0.
(2): Let x0f :=W1β , where β ∈ Rnf . Note that

Kmaxx0f = KmaxW1β =
[
0n,g V2e 0n,f

][
Vg V1e W1

]−1
W1β = 0. (2.81)

Therefore, xT
0fKmaxx0f = β TW T

1 KmaxW1β = 0.
(3): From [Sch83], it is known that the optimal cost corresponding to the LQR Problem 2.21 is
given by xT

0 Kmaxx0, where Kmax is the maximal rank-minimizing solution of the LQR LMI (2.9).
Hence, using equations (2.80) and (2.81) and evaluating the optimal cost for the LQR Problem
2.21, we have

xT
0 Kmaxx0 = (xgs+ xes+ x0f)

T Kmax(xgs+ xes+ x0f) = xT
esKmaxxes. (2.82)
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This completes the proof of the corollary. �

From Corollary 2.40 it is evident that if the initial condition of the system is from W or Vg

then the cost incurred by the system is zero. This corroborates the findings in [WKS86]. Thus,
the optimal cost of an LQR problem depends only on the maximal rank-minimizing solution of
the corresponding LQR LMI and the projection of the initial condition of the system onto the
subspace Ve.

Next we look at a special case of LQR problems when the system admits the zero matrix
as the only solution to the corresponding LQR LMI.

A sufficiency condition for Kmax = 0

Corollary 2.41. Consider the singular LQR Problem 2.21 with assumptions as given in
Theorem 2.30. Consider dim(supBΣ) = ns, where BΣ is as defined in Lemma 2.34.
Then, Kmax = 0n,n.

Proof: Since dim(supBΣ) = ns and dim(Owg) = ns, from Lemma 2.35 it is evident that

img
[ Vg

0n,ns

]
= img

[
V1Λ

V2Λ

]
. Therefore, V2Λ = 0n,ns . Further, from equation (2.58) we have W2 =

0. Therefore, X2Λ = 0 and hence using Theorem 2.30, we must have Kmax = 0n,n. �

The next corollary states that if the transfer function induced by the cost-matrix Q and the
system Σ is minimum-phase, then the optimal cost of the corresponding LQR problem is zero.

Optimal cost of LQR problems: minimum-phase case

Corollary 2.42. Consider the singular LQR Problem 2.21 with rankQ = 1 and (Q,A)
observable. Let c ∈ R1×n be such that Q = cT c. Define G(s) := c(sIn−A)−1b. If the
system G(s) is minimum-phase, then the optimal cost of the LQR problem is zero.

Proof: Recall Â, b̂, ĉ are as defined in equation (2.12). Define det(sIn−A) =: d(s). Therefore,
det(sI2n− Â) = d(s)d(−s). Since the system is (A,b) controllable and (Q,A) observable, there
exists a real-polynomial n(s) such that G(s) = n(s)

d(s) with n(s) and d(s) are coprime.

Note that det(sE−H) = det
[

sI2n−Â −b̂
−ĉ 0

]
= ĉ(sI2n− Â)−1b̂×det(sI2n− Â) =: p(s).

Further, by simple multiplication it can be seen that

G(−s)G(s) = ĉ(sI2n− Â)−1b̂⇒ n(−s)n(s)
d(−s)d(s)

=
p(s)

d(−s)d(s)
,

Therefore, p(s) = n(−s)n(s). Since |σ(E,H)|= 2ns⇒ |roots p(s)|= 2ns⇒ |roots(n(s))|=
ns. Since G(s) is minimum-phase, roots(n(s))(C−.

Consider the system d
dt x = Ax+ bu and y := cx. Note that this is a SISO system which

is (A,b) controllable and (Q,A) observable ⇒ (c,A) observable. Therefore, as discussed in
Section 2.2.4, σ((A+ bF)|supBΣ

) = rootnum(G(s)). Therefore, dim(supBΣ) = ns. Hence,
by Corollary 2.41 we have Kmax = 0n,n⇒ the optimal cost is zero. �

Note that Corollary 2.42, albeit for single-input systems, corroborates the findings on minimum-
phase systems in [Fra79, Theorem 2] and [KS72].
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2.5 Summary

In this chapter, we presented a method to compute the maximal rank-minimizing solution of an
LQR LMI corresponding to a single-input system (Theorem 2.30). We developed this method
using the notion of fast subspaces (strongly reachable subspace) and slow subspaces (weakly
unobservable subspace) of Hamiltonian systems. We showed that augmenting the basis of the
good slow subspace of the Hamiltonian system ΣHam with the basis of a subspace of the fast
subspace of ΣHam is the crucial idea that leads to the method. While developing this method, we
also showed that the fast subspace and the slow subspace of a SISO system can be characterized
in terms of its Rosenbrock system matrix (Theorem 2.24 and Theorem 2.25). Further, we also
showed that the good slow subspace of the Hamiltonian system is disconjugate (Theorem 2.32).

The relation between slow and fast subspaces with singular optimal control was already
known in the literature. In this chapter, in order to get the maximal rank-minimizing solution of
the LQR LMI we linked these well-known notions to the corresponding Hamiltonian system.
Application of the notion of slow and fast subspaces to the Hamiltonian system not only leads
to a method to compute the maximal rank-minimizing solution of the LQR LMI, but also leads
to results that corroborate some of the findings in the literature (Corollary 2.42). Hence, the
primary contribution of this chapter is the idea that, unlike the approach in [HS83], [Wil81],
[WKS86] where the notion of slow and fast subspaces were applied to the system, the applica-
tion of these notions of slow and fast subspaces to the Hamiltonian system brings out further
insight into the singular optimal problem. These ideas also lead to design of state-feedback
controllers to solve a singular LQR problem. We develop the theory behind the design of such
controllers in the next chapter.





Chapter 3

Almost every single-input LQR problem
admits a PD-feedback solution

3.1 Introduction

A regular LQR problem, as motivated in Chapter 2, can be solved using controllers designed
using maximal solution of the corresponding ARE. From a system-trajectory viewpoint, such
a feedback law u(t) = Fx(t) confines the set of trajectories of the system to the optimal ones.
However, it is known that for the singular LQR case such a confinement, using the feedback law
u(t) = Fx(t), might not be always possible [HS83]. As seen in Chapter 2, one of the reasons
is that R is non-invertible for the singular LQR case. Moreover, the ARE itself does not exist
either. However, apart from these arguments, there is a system-theoretic explanation for the
non-existence of such a static state-feedback in the singular LQR case. Note that for regular
LQR problems, it is known that, for any arbitrary initial condition x0, the optimal trajectories of
the system are of the form x(t) = e(A+BF)tx0 and u(t) = Fx(t) (see [Kir04, Chapter 5]). These
optimal state-trajectories are clearly restrictions to R+ := [0,∞) of functions from the space of
infinitely differentiable functions C∞ (from R to R). However, for singular LQR problems it is
known that the optimal inputs, and hence the optimal state-trajectories, of the system are from
the space of impulsive-smooth distributions (see Definition 2.12, [HS83], [WKS86]). This can
easily be verified with the help of a simple example [HS83, Example 2.11].

Example 3.1. Consider the system d
dt x = u and x0 = 1. Let the performance index be J =∫

∞

0
x2(t)dt. Note that J can be made arbitrarily small by a suitable choice of u, e.g., let

u(t) =

−
1
ε

for 06 t 6 ε

0 for t > ε.
(3.1)
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On using this input, the state can be computed to be

x(t) =

1− t
ε

for 06 t 6 ε

0 for t > ε.

The perfomance index therefore becomes J =

∫
ε

0

(
1− t

ε

)2
dt =

ε

3
. Thus, using the input de-

fined in equation (3.1), J can be made arbitrarily small. However, no piecewise continuous or
measurable u(t) can make the performance index zero.
However, if we use u(t) =−δ (t), then x(t) = 0 for t > 0. Thus, we have J = 0.

Example 3.1 shows that for singular LQR problems a solution may not exist if inputs
are from the space of infinitely differentiable functions. The inputs need to be from from the
space of impulsive-smooth distributions. A static state-feedback is incapable of producing such
impulsive-smooth distributions, and hence, incapable of solving the LQR problem for the sin-
gular case. This can also be verified with the help of Example 3.1.

Example 3.2. Let u(t) =−kx(t) for k ∈ R. On application of this static state-feedback law on
the system in Example 3.1, the state becomes x(t) = e−kt . Evaluation of the performance index

gives J =

∫
∞

0
e−2ktdt =

1
2k
6= 0. Thus, no static feedback can make the performance index zero.

Interestingly, there are certain singular LQR problems that can be solved using static state-
feedback control law. The authors in [FN14, FN16, NF19] established that a singular LQR
problem is solvable using a static state-feedback control law if and only if such a problem
admits solutions to the constrained generalized continuous ARE (CGCARE). This is because in
such a case the optimal trajectories continue to be trajectories in C∞. However, in Chapter 4
we show that for almost all singular LQR problems, CGCARE is not solvable and hence such a
static state-feedback solution generically cannot solve a singular LQR problem.

In this chapter, we show that for (almost) every singular LQR problem, with the underlying
state-space system having a single-input, the impulsive-smooth optimal state-trajectories can be
obtained via a state-feedback that is a static linear function of not just the state but also its first
derivative. For obvious reasons we call this feedback a proportional plus derivative (PD) state-
feedback. Evidently, presence of the derivative feedback forces the closed-loop system to be a
singular descriptor system. We show that a suitable PD feedback always exists such that the
impulsive-smooth state-trajectories of the closed-loop singular descriptor system are precisely
the impulsive-smooth optimal state-trajectories of the singular LQR problem. We present this
as Theorem 3.12, in Section 3.4. This is the main result of this chapter.

Two important results, Theorem 2.30 and Theorem 3.9, play crucial roles in the deriva-
tion of Theorem 3.12. Both these results are based on properties of the Hamiltonian system
corresponding to the LQR problem. It is well-known that the Hamiltonian system, given by the
equation (2.11), arises on application of Pontryagin’s maximum principle (PMP) to the LQR
problem [IOW99]. It follows from PMP that, for the regular case, the optimal solutions of the
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LQR problem are nothing but suitably chosen trajectories of the Hamiltonian system [Kir04,
Section 5.2]. For the singular case, however, this Hamiltonian system becomes a singular de-
scriptor system, and PMP becomes applicable to only the smooth trajectories of this system. We
show in Theorem 3.9 that, not only the smooth trajectories of the Hamiltonian system, even the
impulsive-smooth ones, when suitably chosen, are optimal. We prove this using two results, first
a result in [Sch83] that shows that the optimal value of the cost functional for any LQR problem
is induced by the maximal solution, among all the rank-minimizing solutions, of the LQR LMI
(2.3). Recall from Chapter 2 that we call such a solution the maximal rank-minimizing solution
of the LQR LMI. The second result is Theorem 2.30 that provides a method to compute the
maximal rank-minimizing solution of an LQR LMI in terms of the Hamiltonian pencil. The
only assumption that we make here is that the Hamiltonian matrix pair does not have any finite
eigenvalue on the imaginary axis. We show that this assumption can be guaranteed by ensuring
that the matrix of rational functions C(sIn−A)−1B, where Q =: CTC has no finite zero on the
imaginary axis (Lemma 3.17). This is true for almost all A,B,C matrices; the word “almost” in
the title is added hence.

3.2 Preliminaries

3.2.1 Half-line solution of a state-space equation

Recall that in line with the definition in [HS83], [WKS86], we defined the space of impulsive-
smooth distributions in Definition 2.12. Since we deal with distributions from C•imp, it is essen-
tial to define what is meant by the solution of a system Σ with state-space equation d

dt x=Ax+Bu
and initial condition x0. In this chapter, we use the term solution in the distributional sense as
introduced in [HS83] [HSW00].

Definition 3.3. [HSW00, Equation 3.7] Consider a system Σ with a state-space dynamics d
dt x =

Ax+Bu, where A ∈ Rn×n and B ∈ Rn×m. Then, col(x,u) ∈ Cn+mimp is called a trajectory in Σ,
corresponding to an initial condition x0, if col(x,u) satisfies the following equation: d

dt x =

Ax+Bu+ x0δ .

For a detailed justification of Definition 3.3 refer to the discussion in [HS83, Section 3].

3.2.2 Admissible inputs

In the LQR Problem 2.1 it is of paramount importance that the inputs u of the system Σ be such
that the integral in equation (2.8) is well-defined. In this chapter we follow the same line of
reasoning as in [HS83] to ensure that equation (2.8) is well-defined. Note that since

[
Q S
ST R

]
> 0,

there exists a full row-rank matrix
[
C D

]
∈ Rr×(n+m) such that

[
CT

DT

]
[C D ] =

[
Q S
ST R

]
, where

rank
([

Q S
ST R

])
= r. Define y(t) :=Cx(t)+Du(t). In the sequel, the trajectories x(t) and y(t)
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that result from an initial condition x0 and an input u(t) are denoted by x(t;x0,u) and y(t;x0,u),
respectively.

As motivated in Section 3.1, for singular LQR problems the optimal inputs u(t) are from
the space Cmimp. Further, the class of impulsive-smooth distributions are known to be closed
under convolution, in particular under differentiation and integration [HS83, Proposition 3.2].
Therefore, corresponding to u(t) ∈ Cmimp, we must have x(t) ∈ Cnimp ⇒ y(t) ∈ Crimp. Thus, in
terms of Definition 2.12, we have y(t) = yreg+ yimp. Note that the functional (2.8) in terms of
y(t) takes the following form J(x0,u) =

∫
∞

0 ||y(t)||
2dt. For this integral to be well-defined, we

need y(t) to be from the space C∞(R,Rr)|R+ and hence, we define admissible inputs as follows:

Definition 3.4. [HS83, Section 3] We call an input u(t) ∈ Cmimp admissible if y(t;x0,u) ∈ Crimp
is such that yimp = 0. The space of admissible inputs is represented by UΣ.

Using this notion of admissible inputs, we are now in a position to restate Problem 2.21
specifying explicitly the space from which the inputs u need to belong.

Problem 3.5. (Single-input singular LQR problem) Consider a controllable system Σ with
state-space dynamics d

dt x = Ax+bu, where A ∈ Rn×n and b ∈ Rn. Then, for every initial con-
dition x0, find an input u ∈UΣ that minimizes the functional

J(x0,u) :=
∫

∞

0

(
xT Qx

)
dt, where Q> 0. (3.2)

3.3 Characterization of optimal trajectories

As stated in Section 3.1, our primary objective in this chapter is to design a state-feedback
controller that solves a singular LQR problem. In this chapter we take the first step to attain
this objective by characterizing the optimal trajectories of a system corresponding to a singular
LQR problem.

Recall from equation (2.58) that on partitioning W (defined in Theorem 2.30) as W :=[
W1
W2

]
, where W1,W2 ∈ Rn×nf , we must have

W1 =
[
b Ab · · · Anf−1b

]
. (3.3)

Now, define V := imgV1Λ and W = imgW1. Recall from Figure 2.3 in Chapter 2 that the state-
space of the system Σ can be decomposed as Rn = V ⊕W . Thus, any initial condition x0 of the
system Σ can be uniquely decomposed as x0 = x0s+ x0f, where x0s ∈ V , and x0f ∈W . In the
next two lemmas, we characterize those trajectories of Σ that are candidate optimal trajectories
corresponding to an initial condition first for x0 ∈ V and then for x0 ∈W . Later in Section 3.3.3
we show that these candidate optimal trajectories are indeed the optimal trajectories that we are
looking for.
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3.3.1 Characterization of the candidate optimal fast trajectories

In the next lemma, we characterize those trajectories of Σ that are candidate optimal trajectories
corresponding to initial condition x0 ∈W .

Candidate fast optimal trajectories of the system Σ

Lemma 3.6. Let x0k be as given in the table below and define z0k := 0, where k ∈
{0,1, . . . ,nf−1}. Define x̄fk, z̄fk∈Cnimp and ūfk ∈ Cimp as given in the table.

k x0k z0k x̄fk z̄fk ūfk

0 α0b 0 0 0 -α0δ

1 α1Ab 0 -α1bδ 0 -α1δ (1)

2 α2A2b 0 -α2

(
bδ (1)+Abδ

)
0 -α2δ (2)

...
...

...
...

...
...

nf−1 αnf−1Anf−1b 0 -αnf−1
∑nf−2

i=0 Anf−2−ibδ (i) 0 -αnf−1δ (nf−1)

Let x0f :=
∑nf−1

k=0 x0k, x̄f :=
∑nf−1

k=0 x̄fk, z̄f :=
∑nf−1

k=0 z̄fk and ūf :=
∑nf−1

k=0 ūfk. Then,

(1) col(x̄f, z̄f, ūf) ∈ ΣHam corresponding to initial condition col(x0f,0n,1).

(2) col(x̄f, ūf) ∈ Σ corresponding to initial condition x0f.

Proof: (1): Using Lemma 2.36 it is easy to verify that Âkb̂= col(Akb,0n,1) for k∈{0,1, . . . ,nf−
1}. Hence, col(x0k,z0k) ∈ R2n from the table above can be rewritten as

col(x0k,z0k) = col
(

αkAkb,0n,1
)
= αkÂkb̂, for k ∈ {1,2, . . . ,nf−1}.

Now corresponding to the initial condition αkÂkb̂ of the ΣHam we compute the trajectories of
ΣHam. Define s(t) to be the unit step function, i.e.,

s(t) =

1, for t > 0

0, for t < 0.

Corresponding to the initial condition col(x0k,z0k) and input u(t) =−αkδ (k), we therefore have[
x(t)
z(t)

]
= eÂt Âkb̂αks(t)+

∫ t

0
eÂ(t−τ)b̂

(
−αkδ

(k)(τ)
)

dτ =eÂt Âkb̂αks(t)−αk
dk

dtk

(
eÂt b̂s(t)

)
(3.4)

We first prove that

dk

dtk

(
eÂt b̂s(t)

)
= eÂt Âkb̂s(t)+

k−1∑
i=0

Âk−1−ib̂δ
(i). (3.5)
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We use the principle of mathematical induction to prove it.
Base case: (k = 1): Expanding using the chain rule of differentiation, we have

d
dt

(
eÂt b̂s(t)

)
= eÂt Âb̂s(t)+ b̂δ .

Induction step: We assume that

dk

dtk

(
eÂt b̂s(t)

)
= eÂt Âkb̂s(t)+

k−1∑
i=0

Âk−1−ib̂δ
(i).

We show that

dk+1

dtk+1

(
eÂt b̂s(t)

)
= eÂt Âk+1b̂s(t)+

(k+1)−1∑
i=0

Â(k+1)−1−ib̂δ
(i).

Now, using the chain rule of differentiation and applying the induction hypothesis, we have

dk+1

dtk+1

(
eÂt b̂s(t)

)
=

dk

dtk

(
eÂt Âb̂s(t)+ b̂δ

)
=

dk

dtk

(
eÂt Âb̂s(t)

)
+ b̂δ

(k)

= eÂt Âk+1b̂s(t)+
k−1∑
i=0

Âk−ib̂δ
(i)+ b̂δ

(k) = eÂt Âk+1b̂s(t)+
(k+1)−1∑

i=0

Â(k+1)−1−ib̂δ
(i).

This proves equation (3.5). Using equation (3.5) in equation (3.4), we have[
x(t)
z(t)

]
= eÂt Âkb̂αks(t)−αk

dk

dtk

(
eÂt b̂s(t)

)
= eÂt Âkb̂s(t)αk− eÂt Âkb̂s(t)αk−

k−1∑
i=0

Âk−1−ib̂δ
(i) =−

k−1∑
i=0

Âk−1−ib̂δ
(i). (3.6)

Using Statement (3) of Lemma 2.36, we can rewrite equation (3.6) as:[
x(t)
z(t)

]
=−

k−1∑
i=0

Âk−1−ib̂δ
(i) =

k−1∑
i=0

[
Ak−1−ib

0n,1

]
δ
(i) =

[
x̄fk

z̄fk

]
, for k ∈ {1,2, . . . ,nf−1}. (3.7)

Thus, the trajectory col(x̄fk, z̄fk, ūfk) satisfies the equation d
dt [

x
z ] = Â [xz ]+ b̂u. Next, we show

that the trajectory col(x̄fk, z̄fk, ūfk) satisfies ĉ
[

x̄fk
z̄fk

]
= 0.

ĉ

[
x̄fk

z̄fk

]
=−ĉ

(
αk

k−1∑
i=0

(
Â(k−1−i)b̂δ

(i)
))

=−αk

k−1∑
i=0

(
ĉÂ(k−1−i)b̂δ

(i)
)
. (3.8)

From Lemma 2.36, ĉÂ`b̂ = 0 for ` ∈ {0,1,2, . . . ,nf− 1}. Therefore, the right-hand side of
equation (3.8) is equal to 0, i.e., ĉ

[
x̄fk
z̄fk

]
= 0. Thus, the trajectories

[
x̄fk
z̄fk

]
satisfies the output-

nulling equation (2.12) of ΣHam for k∈ {1,2, . . . ,nf−1} in the distributional sense. To complete
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the proof we need to show that
[

x̄f0
z̄f0

]
satisfies equation (2.12), as well. We prove this next.

When k = 0 i.e.
[x00

z00

]
= α0b̂ and u(t) =−α0δ , from equation (3.4) we have

[
x(t)
z(t)

]
= α0eÂt b̂−

∫ t

0
eÂ(t−τ)b̂

(
−α0δ

(0)(τ)
)

dτ = α0eÂt b̂−α0eÂt b̂ = 02n,1 =

[
x̄f0

z̄f0

]
.

Clearly, ĉ
[

x̄f0
z̄f0

]
= 0. Therefore, col(x̄f0, z̄f0, ūf0) ∈ ΣHam. Thus, col(x̄fk, z̄fk, ūfk) ∈ ΣHam cor-

responding to initial condition col(x0k,z0k), where k ∈ {0,1, . . . ,nf−1}. Since ΣHam is a linear
system, by the principle of superposition, Statement (1) of the lemma directly follows.
(2): We present a table next which explicitly validates that the trajectories col(x̄fk, ūfk) char-
acterized in Lemma 3.6 satisfies the state-space dynamics of Σ in a distributional sense, i.e., in
the sense of Definition 3.3.

k x0 = x0k x(t) = x̄fk u(t) = ūfk
d
dt x Ax+bu

0 α0b 0 −α0δ 0 −α0bδ

1 α1Ab −α1bδ −α1δ (1) −α1bδ (1) −(α1bδ (1)+α1Abδ )

2 α2A2b −α2

(
bδ (1)+Abδ

)
−α2δ (2) −α2

(
bδ (2)+Abδ (1)

)
−α2

(
bδ (2)+Abδ (1)+A2bδ

)
...

...
...

...
...

...

nf−1 αnf−1Anf−1b −αnf−1
∑nf−2

i=0 Anf−2−ibδ (i) −αnf−1δ (nf−1) −αnf−1
∑nf−2

i=0 Anf−1−ibδ (i) −αnf−1
∑nf−1

i=0 Anf−1−ibδ (i)

Table 3.1: Table to show the validity of d
dt x = Ax+bu+ x0δ for different initial conditions.

From the table it is evident that the trajectories col(x̄fk, ūfk) satisfy d
dt x = Ax+bu+ x0δ .

Thus, col(x̄fk, ūfk) ∈ Σ corresponding to initial condition x0k. Since Σ is a linear system, by
principle of superposition Statement (2) directly follows. �

Note that using W1 defined in equation (3.3), the candidate optimal state-trajectory x̄f can
also be written as:

x̄f =−W1



0 δ δ (1) δ (2) · · · δ (nf−2)

0 0 δ δ (1) · · · δ (nf−3)

0 0 0 δ · · · δ (nf−4)

...
...

...
... · · ·

...

0 0 0 0 · · · δ (1)

0 0 0 0 · · · δ

0 0 0 0 · · · 0




α0

α1
...

αnf−1

 . (3.9)

This form of x̄f will be of importance to us in the sequel.
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3.3.2 Characterization of the candidate optimal slow trajectories

Next we characterize the candidate optimal trajectories of Σ when the initial condition x0 is
from V . For Lemma 3.7, it is important to note the following: since V1Λ is full column-rank
by Theorem 2.32, there must exists F ∈ R1×n such that V3Λ = FV1Λ, where V3Λ is as defined in
equation (2.39). We use such a matrix F in the next lemma.

Candidate slow optimal trajectories of the system Σ

Lemma 3.7. Let col(V1Λ,V2Λ,V3Λ) be such that equation (2.39) is satisfied. Assume
the initial condition of the system to be x0 = V1Λβ , where β ∈ Rns . Define z0 := V2Λβ ,
x̄s :=V1ΛeΓtβ , ūs :=FV1ΛeΓtβ , and z̄s :=V2ΛeΓtβ , where F ∈R1×n satisfies V3Λ =FV1Λ.
Then,

(1) col(x̄s, z̄s, ūs) ∈ ΣHam corresponding to initial condition col(x0,z0).

(2) col(x̄s, ūs) ∈ Σ corresponding to initial condition x0.

Proof: (1) : Define F̂ :=
[
F 0

]
∈R1×2n. Using F̂ as the state-feedback in ΣHam, i.e., u= F̂ [ x

z ],
the output-nulling representation (2.12) of ΣHam takes the following form

d
dt

x

z

= Â

x

z

+ b̂u = (Â+ b̂F̂)

x

z

 , and ĉ

x

z

= 0. (3.10)

Therefore, the trajectories in ΣHam corresponding to the initial condition (x0,z0) takes the fol-
lowing form: x

z

= e(Â+b̂F̂)t

x0

z0

= e(Â+b̂F̂)t

V1Λ

V2Λ

β =

V1Λ

V2Λ

eΓt
β =

x̄s

z̄s

 . (3.11)

From equation (2.39) we know that ĉ

V1Λ

V2Λ

= 0. Therefore,

ĉ

x̄s

z̄s

= ĉ

V1Λ

V2Λ

eΓt
β = 0. (3.12)

Thus, from equation (3.11) and equation (3.12) it is evident that col(x̄s, z̄s, ūs) ∈ ΣHam.
(2) : From equation (2.11) it is evident that col(x̄s, ūs) satisfy the state-space dynamics d

dt x =
Ax+bu. Thus, col(x̄s, ūs) ∈ Σ. �

Now we claim that the trajectories defined in Lemmas 3.7 and 3.6 are indeed the optimal tra-
jectories of Σ.

3.3.3 Optimal trajectories of the system

Recall that the DAEs in equation (2.11) are obtained on applying PMP in regular LQR problems.
Therefore, for regular LQR problems, the trajectories that satisfy the DAEs in equation (2.11)
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are the optimal trajectories (see [Kir04]). However, we cannot invoke PMP here to claim that
the trajectories characterized in Lemma 3.6 and Lemma 3.7 that satisfy the DAEs in equation
(2.11) are optimal. This is because the trajectories characterized in Lemma 3.6 are not bounded:
see [PBGM62, Chapter II] for more on inputs admissible for PMP. Hence, instead of invoking
PMP we use a result in [Sch83] to prove that the trajectories in Lemma 3.6 and Lemma 3.7
minimizes the functional (2.8). We first review the result in [Sch83] for the ease of exposition.

Proposition 3.8. [Sch83, Theorem 2] Consider the singular LQR Problem 3.5. Let the corre-
sponding LMI be as given in inequality (2.9). Let Kmax be the maximal rank-minimizing solution
of the LQR LMI. Then,

min

∫
∞

0

(
xT Qx

)
dt = xT

0 Kmaxx0.

The next theorem shows that the candidate optimal trajectories characterized in Lemma
3.6 and Lemma 3.7 are the optimal ones for the LQR Problem 3.5.

Optimal trajectories of the system Σ

Theorem 3.9. Consider an initial condition of the system Σ to be x0 = V1Λβ +W1α ,
where V1Λ and W1 are as defined in Theorem 2.30 and equation (3.3), respectively
with β ∈ Rns and α ∈ Rnf . Let x̄ := x̄s+ x̄f and ū := ūs+ ūf, where col(x̄f, ūf) and
col(x̄s, ūs) are as defined in Lemma 3.6 and Lemma 3.7, respectively. Then,

ū is an admissible input, i.e., ū ∈UΣ.

Further, the following statements hold:

(1) col(x̄, ū) ∈ Σ.

(2)
∫

∞

0

(
x̄T
s Qx̄s

)
dt = xT

0 Kmaxx0.

(3)
∫

∞

0

(
x̄T
f Qx̄f

)
dt = 0.

(4)
∫

∞

0

(
x̄T Qx̄

)
dt = xT

0 Kmaxx0.

(5) col(x̄, ū) is the optimal trajectory of the LQR Problem 3.5.

Proof: From Lemma 3.6 we rewrite the trajectories x̄fk, ūfk and initial condition x0fk as x̄fk =

−αk
∑k−1

i=0 Ak−1−ibδ (i), ūfk =−αkδ (k) , and x0fk =Akbαk, respectively with k∈{1,2, . . . ,nf−1}.
Hence, we have

Qx̄fk =−Q
k−1∑
i=0

Ak−1−ibδ
(i)

αk =
k−1∑
i=0

QAk−1−ibδ
(i)

αk, for k ∈ {1,2, · · · ,nf−1}. (3.13)

From Lemma 2.36 we know that QA`b = 0 for ` ∈ {0,1, · · · ,nf− 2}. Using this identity in
equation (3.13), we infer that Qx̄fk = 0 for k ∈ {1, . . . ,nf− 1}. Further, for initial condition
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x0 = bα0, we have x̄f0 = 0 from Lemma 3.6. Hence, Qx̄f0 = 0. Thus, we can infer that

Qx̄f = Q
nf−1∑
k=0

x̄fk =

nf−1∑
k=0

Qx̄fk = 0 for k ∈ {0,1,2, · · · ,nf−1}. (3.14)

Now, define C ∈ Rr×n such that Q =: CTC, where rank(Q) = r. Further, define y(t) :=Cx(t).
Using the fact that Qx̄f = 0⇒Cx̄f = 0, we must have y(t;x0, ū) = C(x̄s+ x̄f) = C(V1ΛeΓtβ +

x̄f) =CV1ΛeΓtβ ∈ C∞(R,Rr)|R+ . Thus, by Definition 3.4, we have ū ∈UΣ.
(1): Using Lemmas 3.7, 3.6, and linearity of Σ, it is evident that col(x̄s+ x̄f, ūs+ ūf) ∈ Σ.
(2): Since V3Λ ∈ R1×ns and V1Λ is full column-rank, there exists an F ∈ R1×n such that V3Λ =

FV1Λ. Thus, from equation (2.39), we have AV1Λ + bV3Λ = (A+ bF)V1Λ = V1ΛΓ. Therefore,
˙̄xs =V1ΛΓeΓtβ = (A+bF)V1ΛeΓtβ . Hence, on using Kmaxb = 0, we get

d
dt
(x̄T

s Kmaxx̄s) = ˙̄xs
T Kmaxx̄s+ x̄T

s Kmax ˙̄xs

= (V1ΛΓeΓt
β )T Kmax(V1ΛeΓt

β )+(V1ΛeΓt
β )T Kmax(V1ΛΓeΓt

β )

= β
T eΓT tV T

1Λ(A+bF)T KmaxV1ΛeΓt
β +β

T eΓT tV T
1ΛKmax(A+bF)V1ΛeΓT t

β

= β
T eΓT t(V T

1ΛAT KmaxV1Λ +V T
1ΛKmaxAV1Λ)eΓt

β . (3.15)

Note that KmaxV1Λ =
[
V2Λ 0

][
V1Λ W1

]−1
V1Λ =V2Λ. Using this in equation (3.15), we have

V T
1Λ(A

T Kmax+KmaxA+Q)V1Λ =V T
1ΛATV2Λ +V T

2ΛAV1Λ +V T
1ΛQV1Λ

=
[
V T

2Λ
−V T

1Λ

]
Â

V1Λ

V2Λ

 . (3.16)

From equation (2.39), we have

Â

V1Λ

V2Λ

+ b̂V3Λ =

V1Λ

V2Λ

Γ⇒ Â

V1Λ

V2Λ

=

V1Λ

V2Λ

Γ− b̂V3Λ (3.17)

Using equation (3.17) in equation (3.16) combined with the facts that V T
1Λ

V2Λ = V T
2Λ

V1Λ (see
Proposition 2.31) and bTV2Λ = 0 , we have

V T
1Λ(A

T Kmax+KmaxA+Q)V1Λ =
[
V T

2Λ
−V T

1Λ

]V1Λ

V2Λ

Γ−

b

0

= 0

⇒V T
1Λ(A

T Kmax+KmaxA)V1Λ =−V T
1ΛQV1Λ. (3.18)

Using equation (3.18) in equation (3.15), we get

d
dt

(
x̄T
s Kmaxx̄s

)
=−β

T eΓT tV T
1ΛQV1ΛeΓt

β =−x̄T
s Qx̄s. (3.19)

Hence, cost due to input ūs and initial condition x0s is∫
∞

0

(
x̄T
s Qx̄s

)
dt =−

∫
∞

0

d
dt

(
x̄T
s Kmaxx̄s

)
dt = xT

0 Kmaxx0− xT
∞Kmaxx∞, where lim

t→∞
x(t) =: x∞.
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Note that the integral above is well-defined since x̄s=img
(
V1ΛeΓt), where σ(Γ)(C−. Further,

since σ(Γ)(C−, limt→∞ x=x∞=0. Thus, Statement 2 follows.
(3): Since Qx̄f = 0 from equation (3.14), the cost due to input ūf and initial condition x0f is∫

∞

0

(
x̄T
f Qx̄f

)
dt = 0.

(4): From Statement (1) of this theorem, we know that corresponding to initial condition x0 we
have col(x̄s+ x̄f, ūs+ ūf) ∈ Σ. Therefore, using Statement (2), (3) of the theorem and the fact
that Qx̄f = 0, we have∫

∞

0

(
(x̄s+ x̄f)T Q(x̄s+ x̄f)

)
dt =

∫
∞

0
(x̄T

s Qx̄s+ x̄T
s Qx̄f+ x̄T

f Qx̄s+ x̄T
f Qx̄f)dt

=

∫
∞

0
(x̄T

s Qx̄s)dt = xT
0 Kmaxx0.

(5): From Statement (3) and (4) of Theorem 2.30, we know that Kmax is the maximal rank-
minimizing solution. Further, from Proposition 3.8 we know that the minimum value that can
be attained by

∫
∞

0 (xT Qx)dt is xT
0 Kmaxx0. Hence, from Statement (4) of this theorem, we infer

that col(x̄, ū) are the minimizers of
∫

∞

0 (xT Qx)dt, i.e., col(x̄, ū) is the optimal trajectory of the
LQR Problem 3.5. �

Thus, Theorem 3.9 establishes that col(x̄f, ūf) are the optimal trajectories of Σ. Note that, on
using Table 3.1, the optimal input for the LQR problem in Example 3.1 can be computed to be
−δ (t). This corroborates with our analysis in Example 3.1.

In the next section, we show that the system Σ can indeed be confined to the optimal
trajectories col(x̄, ū) using a PD state-feedback control law of the form u = Fpx+Fd d

dt x.

3.4 PD state-feedback controller for singular LQR problems:
single-input case

In this section we present a method to design a PD state-feedback control law u = Fpx+Fd d
dt x

that solves the singular LQR Problem 2.21. To this end we first define the feedback matrices Fp
and Fd. Then we show that the application of the control law u = Fpx+Fd d

dt x to the system Σ

confines its state-trajectories to the optimal ones x̄ (characterized in Theorem 3.9).

Using the fact that X1Λ is nonsingular (Statement (1) of Theorem 2.30), we define the
matrices Fp,Fd ∈ R1×n as follows:

Fp :=
[
V3Λ f0 f1 · · · fnf−1

]
X−1

1Λ
, (3.20)

Fd :=
[
01,ns 1 − f0 · · · − fnf−2

]
X−1

1Λ
, (3.21)
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where V3Λ is as defined in Theorem 2.30 and fi ∈ R for i ∈ {0,1, . . . ,nf−1}. The closed loop
system obtained on application of u = Fpx+Fd d

dt x to Σ is as follows:

Ec
d
dt

x = Acx, where (In−bFd) =: Ec,(A+bFp) =: Ac. (3.22)

We use the symbol Σclosed to represent the closed loop system in equation (3.22). Note that

EcX1Λ = (In−bFd)X1Λ = X1Λ−bFdX1Λ

=
[
V1Λ b Ab · · · Anf−1b

]
−b
[
01,ns 1 − f0 · · · − fnf−2

]
Ec =

[
V1Λ 0n,1 Ab+b f0 · · · Anf−1b+b fnf−2

]
︸ ︷︷ ︸

Êc

X−1
1Λ

Clearly, Êc ∈ Rn×n is a singular matrix and therefore, Ec is the product of a singular matrix
Êc and a nonsingular matrix X−1

1Λ
. Thus, Ec is a singular matrix. This implies that the sys-

tem Σclosed in equation (3.22) is a singular descriptor system. Recall from Proposition 2.8
that for the singular descriptor system Σclosed if det(sEc−Ac) 6= 0, then we get unique state-
trajectories in Σclosed (given by equation (2.5)) corresponding to an initial condition. Unique-
ness in the state-trajectories of Σclosed corresponding to an initial condition is crucial in the
sequel to prove that the PD state-feedback control law, that we propose, confines the system to
its optimal state-trajectories only. Hence, in the next lemma we show the existence of Fp and Fd
such that det(sEc−Ac) 6= 0.

Existence of Fp and Fd such that the matrix pencil (sEc−Ac) is regular

Lemma 3.10. Let Fp and Fd be as defined in equation (3.20) and equation (3.21), re-
spectively. Then, there exist f0,. . . , fnf−1 ∈ R such that det(sEc−Ac) 6=0, where Ec, Ac

are as defined in equation(3.22).

Proof: In order to prove this, we construct two matrices Fp and Fd using equation (3.20) and

equation (3.21), respectively such that det(sEc−Ac) 6= 0. We define f̂ :=
[

f0 f1 · · · fnf−2

]
∈

R1×(nf−1). Then using equation (3.21), we can write

EcX1Λ = (In−bFd)X1Λ = X1Λ


Ins 0 0

0 0 f̂

0 0 Inf−1

 . (3.23)

From equation (3.20), we have FpAkb = fk for k ∈ {0, . . . ,nf−1}. Therefore, we get

(A+bFp)Akb = Ak+1b+bFpAkb = Ak+1b+b fk, for k ∈ {0,1, . . . ,nf−1}. (3.24)

Note that for k = nf−1, we have (A+bFp)Anf−1b = Anfb+b fnf−1. Since X1Λ is invertible, us-

ing equation (3.3) we can infer that the columns of X1Λ =
[
V1Λ W1

]
=
[
V1Λ b · · · Anf−1b

]
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are independent. Therefore, there exists κv ∈Rns and κ0,κ1, . . . ,κnf−1 ∈R such that the vector
Anfb can be uniquely written as

Anfb :=V1Λκv +bκ0 +Abκ1 + · · ·+Anf−1bκnf−1. (3.25)

Defining κ := col(κ1,κ2, . . . ,κnf−1) and using equation (3.24), equation (3.25) with the fact
that (A+bFp)V1Λ =V1ΛΓ (From equation (2.39)), we have

AcX1Λ = (A+bFp)X1Λ = X1Λ


Γ 0 κv

0 f̂ fnf−1 +κ0

0 Inf−1 κ

 . (3.26)

Define Z1:=

[ Ins 0 0
0 1 − f̂
0 0 Inf−1

]
. Note that det(Z1) = 1. Using equation (3.23) and equation (3.26),

it can be verified by simple multiplication that

Z1X−1
1Λ

(sEc−Ac)X1Λ = sZ1X−1
1Λ

EcX1Λ−Z1X−1
1Λ

AcX1Λ

=



sIns−Γ 0 0 · · · 0 −κv

0 0 0 · · · 0 −κ0− fnf−1 + f̂ κ

0 −1 s · · · 0 −κ1
...

...
...

. . .
...

...

0 0 0 · · · s −κnf−2

0 0 0 · · · −1 s−κnf−1


. (3.27)

Since det
(
Z1X−1

1Λ
(sEc−Ac)X1Λ

)
= det(sEc−Ac), we have from equation (3.27),

det(sEc−Ac) 6= 0⇔ fnf−1− f̂ κ 6=−κ0.

In particular, if we choose f̂ = 0 and fnf−1 6= −κ0, then the matrices Fp and Fd are such that
det(sEc−Ac) 6= 0. Thus, there exist at least two matrices Fp and Fd such that det(sEc−Ac) 6=
0. This completes the proof of the lemma. �

Note that there are infinitely many choices of f̂ and fnf−1 such that fnf−1− f̂ κ 6= −κ0. Thus,
from Lemma 3.10 we can infer that there are uncountably many choices of Fp and Fd such that
det(sEc−Ac) 6= 0 for Σclosed. Each of these choices leads to a closed loop system Σclosed that
admits unique state-trajectories. Next we prove that these unique state trajectories are nothing
but the optimal state-trajectories x̄ characterized in Theorem 3.9.
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Trajectories of the closed loop system Σclosed

Theorem 3.11. Let Σclosed be the system defined in equation (3.22), where Fp and Fd are
as defined in equation (3.20) and equation (3.21), respectively, with det(sEc−Ac) 6= 0.
Consider an arbitrary initial condition of the system Σclosed given as x0 =: V1Λβ +W1α ,
where β ∈ Rns , α ∈ Rnf , and V1Λ, W1 are as defined in Theorem 2.30, equation (3.3),
respectively. Let x̄ be as defined in Theorem 3.9. Then, the unique trajectory in Σclosed

corresponding to x0 is x̄.

Proof: First we transform the system Σclosed to its canonical form. Recall Z1 from the proof of
Lemma 3.10. Using the co-ordinate transform p := X−1

1Λ
x on Σclosed and then pre-multiplying

with Z1X−1
1Λ

gives

Z1X−1
1Λ

EcX1Λ︸ ︷︷ ︸
Enew

d
dt

p = Z1X−1
1Λ

AcX1Λ︸ ︷︷ ︸
Anew

p. (3.28)

From equation (3.23) and equation (3.26) we have that

Enew =


Ins 0 0

0 0 0

0 0 Inf−1

 , Anew =


Γ 0ns,nf−1 κv

0 01,nf−1 γ

0nf−1,1 Inf−1 κ

 , (3.29)

where κ , κv, f̂ are as defined in the proof of Lemma 3.10 and γ := κ0 + fnf−1− f̂ κ . Note that
Fp and Fd are chosen such that γ 6= 0 to ensure det(sEc−Ac) 6= 0 (see Lemma 3.10). We use
this fact to define the matrix:

Z2 :=


Ins −

κv
γ

0ns,nf−1

0 −κ

γ
Inf−1

0 1
γ

01,nf−1

 .
Note that Z2 is nonsingular. On pre-multiplication of Enew and Anew in equation (3.28) with Z2

it can be verified that

Eclosed := Z2Enew =

Ins 0

0 Y

 , where Y :=

0 Inf−1

0 0

 (3.30)

Aclosed := Z2Anew =

Γ 0

0 Inf

 . (3.31)

Therefore, pre-multiplying equation (3.28) with Z2 givesIns 0

0 Y

 d
dt

p =

Γ 0

0 Inf

 p (3.32)
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Since Z2Z1X−1
1Λ

and X1Λ are nonsingular, equation (3.32) is a canonical form of the system
Σclosed. Now we prove the theorem in two steps: first we assume the initial condition to be
x0 =V1Λβ and then we consider x0 =W1α .
Step 1: Let x0 =V1Λβ , where β ∈Rns . Then, in the transformed co-ordinates the initial condi-
tion is X−1

1Λ
x0=X−1

1Λ
V1Λβ =X−1

1Λ
[V1Λ W1 ]

[
β

0

]
=col(β ,0nf,1). Using the fact that the nilpotency

index of Y is nf, from equation (2.5) the state-trajectories of Σ corresponding to initial condition
V1Λβ is:

x(t) = X1Λ

Ins
0

eΓt
[
Ins 0

]
X−1

1Λ
x0−X1Λ

 0

Inf

nf−1∑
i=1

δ
(i−1)Y i

[
0 Inf

]
X−1

1Λ
x0

=V1ΛeΓt
[
Ins 0

] β

0nf,1

−W1

nf−1∑
i=1

δ
(i−1)Y i

[
0 Inf

] β

0nf,1

=V1ΛeΓt
β = x̄s.

Step 2: Let x0 =W1α =
∑nf−1

k=0 Akbαk, where α ∈ Rnf and α =: col(α0,α1, . . . ,αnf−1). Then,
in the transformed co-ordinates the initial condition of the system Σclosed is X−1

1Λ
x0 =X−1

1Λ
W1α =

col(0ns,1,α). Hence, from equation (2.5) the state-trajectories of Σ due to initial condition W1α

is x(t) =−W1
∑nf−1

i=1 δ (i−1)Y iα , which in matrix form is:

x(t) =−W1



0 δ δ (1) δ (2) · · · δ (nf−2)

0 0 δ δ (1) · · · δ (nf−3)

0 0 0 δ · · · δ (nf−4)

...
...

...
... · · ·

...

0 0 0 0 · · · δ (1)

0 0 0 0 · · · δ

0 0 0 0 · · · 0




α0

α1
...

αnf−1

 .

Using equation (3.9), we therefore have x(t) = x̄f.
It then follows from Step 1 and Step 2, and linearity of Σclosed that corresponding to

an initial condition x0 = V1Λβ +W1α , the trajectory of the system Σclosed is x̄s+ x̄f. From
Theorem 3.9 we know that x̄= x̄s+ x̄f. Since Fp and Fd are chosen such that det(sEc−Ac) 6= 0,
corresponding to initial condition x0, x̄ must be unique. �

Using Theorems 3.9 and 3.11 we present the main result next.

Trajectories of the closed loop system Σclosed are the optimal ones

Theorem 3.12. Consider the singular LQR Problem 2.21. Assume Fp ∈ R1×n and
Fd ∈ R1×n to be as defined in equation (3.20) and equation (3.21), respectively with
det

(
s(In−bFd)−(A+bFp)

)
6=0. Let the closed loop system obtained on application of

the PD state-feedback law u=Fpx+Fd d
dt x to Σ be as defined in equation (3.22). Then, for

an arbitrary initial condition x0, the corresponding trajectory of the closed loop system
Σclosed minimizes the functional (2.8).
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Proof: From Theorem 3.11 it is clear that corresponding to an initial condition x0 the unique
state-trajectory of the system Σclosed is x̄. Further, from Theorem 3.9, we know that the integral∫

∞

0 (x̄
T Qx̄)dt is well-defined and x̄ is the optimal state-trajectory of the LQR Problem 2.21.

Thus, the state-trajectories of Σclosed corresponding to any initial condition x0 minimizes the
functional (2.8). �

Recall that Theorem 3.12 is not applicable to singular LQR problems that admit Hamiltonian
matrix pairs with imaginary axis eigenvalues (condition σ(E,H)∩ jR = /0 in Theorem 2.30).
This assumption is true for almost all singular LQR problems. Thus, using the fact that regular
LQR problems are solvable using static (P) state-feedback control laws, we can infer from
Theorem 3.12 that almost every single-input LQR problem can be solved using a PD state-
feedback control law.

Note that since Σclosed is a singular descriptor system, from Section 2.2.3 we know that
Σclosed admits a slow and a fast subspace. In what follows, we show that the slow and fast
subspaces of Σclosed are nothing but the subspaces imgV1Λ and imgW1, respectively with V1Λ

and W as defined in Theorem 2.30 and equation (3.3), respectively.
Pre- and post-multiplying Ec and Ac in equation (3.22) with the nonsingular matrices

Z2Z1X−1
1Λ

and X1Λ takes Σclosed to its canonical form as in equation (3.32). Therefore, recall
from Section 2.2.3 that the subspace spanned by the first ns columns of X1Λ, i.e., the subspace
imgV1Λ is the slow subspace of Σclosed. On the other hand, the subspace spanned by the last
nf columns of X1Λ, i.e., imgW1 is the fast subspace of Σclosed. We formally present this in the
form of a corollary next.

Slow and fast subspaces of the closed-loop system that solves LQR Problem 3.5

Corollary 3.13. Consider the system Σclosed with the state-space equation of the form
given in equation (3.22), where Fp and Fd are as defined in Theorem 3.12. Define V :=
imgV1Λ and W := imgW1 with V1Λ and W1 as defined in Theorem 2.30. Then, V and W

are the slow subspace and fast subspace of the system Σclosed, respectively.

Proof: This directly follows from the discussion before this corollary. �

Now let us apply Theorem 3.12 for the single-input regular LQR Problem 2.1 with the system
given by d

dt x = Ax+bu and the objective function as defined in equation (2.1). For the regular
LQR problem, we can directly use Proposition 2.19. Hence, there exists (V1Λ,V2Λ,V3Λ) such
that 

A 0 b

−Q −AT −S

ST bT R




V1Λ

V2Λ

V3Λ

=


V1Λ

V2Λ

0

Γ, where σ(Γ)(C−. (3.33)

Thus, we have from equation (3.33)

STV1Λ +bTV2Λ +RV3Λ = 0⇒V3Λ =−R−1(bTV2Λ +STV1Λ).
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Using the fact that X1Λ =V1Λ here, from Theorem 3.12 we get

Fp =V3ΛX−1
1Λ

=V3ΛV−1
1Λ

=−R−1(bTV2Λ +STV1Λ)V−1
1Λ

=−R−1(bTV2ΛV−1
1Λ

+ST ) =−R−1(bT Kmax+ST ).

Further, from equation (3.21), we have Fd= 0. Thus, the state-feedback law u=−R−1(bT Kmax+

ST )x solves the regular LQR problem. This corroborates the well-known results on regular LQR
problem in the literature. Hence, Theorem 3.12 is indeed a generalization of the solution to the
regular LQR problem.

Example 3.14. Recall Example 2.20 from Section 2.2.6. For this example X1Λ =

[
1 0 0
1 1 0
−2 0 1

]
,

and V3Λ = 0. Assigning f0 = 0 and defining f1 =: f in equation (3.20), we have

Fp =
[
0 0 f

]
1 0 0

1 1 0

−2 0 1


−1

=
[
0 0 f

]
1 0 0

−1 1 0

2 0 1

=
[
2 f 0 f

]

Similarly, from equation (3.21), we have

Fd =
[
0 1 0

]
1 0 0

1 1 0

−2 0 1


−1

=
[
−1 1 0

]

Thus,

I3−BFd =


1 0 0

1 0 0

0 0 1

 , and A+BFp =


1 0 1

1+2 f 0 1+ f

1 1 0

 .
Note that det

(
s(I3−BFd)− (A+BFp)

)
= − f (s+ 1). Thus, if we chose any f ∈ R \ 0 then

det
(
s(I3−BFd)− (A+BFp)

)
6= 0. Hence, for any value of f ∈R\0, we have a PD-controller

that solves the singular LQR problem. Note that there are uncountable numbers of PD-controllers
that solve this singular optimal control problem.

For initial condition x0 =

[
1
1
−2

]
β +

[
0
1
0

]
α0 +

[
0
0
1

]
α1, the optimal input for this problem

is u∗ =−2e−tβ −α0δ −α1δ̇ .

We revisit Example 1.2 introduced in Chapter 1 to design a controller for the damped spring-
mass system such that its trajectories are confined to the ones that minimize the total energy of
the system.

Example 3.15. Consider the damped spring-mass system in Example 1.2 with normalized
spring constant k, damping constant c and mass m. Then, the dynamics of the system is
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d
dt

p1

p2

=

 0 1

−1 −1

p1

p2

+
0

1

u
1

u(t)

q

1

1

Figure 3.1: A damped spring-mass system with
m = 1 kg, c = 1 Ns/m, and k = 1 N/m.

The objective is to find an input u, for all initial conditions x0 ∈ R2, that minimizes the
functional

J(x0,u) =
1
2

∫
∞

0

p1

p2

T 1 0

0 1

p1

p2

dt

On computing det(sE−H), we have ns = 1 and nf = 1. The set of eigenvalues of the corre-
sponding Hamiltonian system is Λ = {1,−1} and hence the lambda-set is {−1}. Correspond-
ing to this lambda-set an eigenvector is VeΛ = col(2,−2,1,0,2). Therefore, V1Λ = col(2,−2),
V2Λ = col(1,0), and V3Λ = 2. Using Theorem 2.30, we get

XΛ =

 X1Λ

X2Λ

=


2 0

−2 1

1 0

0 0

⇒ Kmax = X2ΛX−1
1Λ

=

0.5 0

0 0



Therefore, minimum energy the damped spring mass system can attain is xT
0 Kmaxx0 =

q(0)2

2
,

where q(0) is the initial position of the damped spring-mass system. We design a controller
using Theorem 3.12 to confine the trajectories of the system in Figure 3.1 to its optimal trajec-
tories.

Fp =
[
V3Λ f

]
X−1

1Λ
=
[
2 f

] 2 0

−2 1

−1

=
[
1+ f f

]
Fd =

[
0 1

]
X−1

1Λ
=
[
1 1

]
The closed-loop system obtained on application of the feedback u(t) = Fpx(t)+Fd d

dt x(t) is 1 0

−1 0

 d
dt

q

q̇

=

0 1

f f

q

q̇


On chosing any f ∈ R \ {0}, we have an autonomous closed loop system that confines the
trajectories of the damped spring-mass system to the ones that minimize the total energy of the
system.
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From Theorem 3.12 it is evident that LQR problems can be solved using PD state-feedback
controllers. However, Theorem 3.12 is applicable only for those LQR problems that admit
Hamiltonian systems ΣHam with σ(E,H)∩ jR= /0 and det(sE−H) 6= 0 (see Theorem 2.30 for
these assumptions). Hence, a relevant question here is: how do we solve the singular LQR Prob-
lem 3.5 when the aforementioned assumptions are not met? We discuss about the implications
of these assumptions for single-input LQR problems next.

(i) det(sE−H) = 0 : A singular Hamiltonian matrix pencil implies that the corresponding
Hamiltonian system ΣHam is non-autonomous. However, we show next that for a single-input
system with Q 6= 0, the Hamiltonian system is always autonomous.

A single-input singular LQR problem admits an autonomous Hamiltonian system

Lemma 3.16. Consider the singular LQR Problem 3.5 with the corresponding Hamil-
tonian system ΣHam as defined in equation (2.11) with Q 6= 0. Then, the Hamiltonian
system ΣHam is autonomous.

Proof: To the contrary, assume the system ΣHam to be non-autonomous. Note that the transfer
function of the Hamiltonian system ΣHam is given by the rational function H(s) := ĉ(sI2n−
Â)−1b̂, where Â, b̂, ĉ are as defined in equation (2.11). From Proposition 2.17 it is evident that
ΣHam is non-autonomous if and only if H(s) = 0. For H(s) to be identically zero, all the Markov
parameters of H(s) must be zero, i.e., ĉÂ`b̂ = 0 for all ` ∈ N∪{0}.

We first claim that if ĉÂ`b̂ = 0 for all ` ∈N∪{0}, then QAkb = 0 for all k ∈N∪{0}. We prove
this using induction and the fact that Q> 0.
Base case: (k = 0) For `= 1, we know that

ĉÂb̂ = 0⇒
[
0 bT

] A 0

−Q −AT

b

0

= bT Qb = 0⇒ Qb = 0.

Assume QAib = 0 for 06 i6 k−1. We prove that QAkb = 0.

ĉÂ(2k+1)b̂ =
[
0 bT

] A 0

−Q −AT

 A 0

−Q −AT

2k−1 A 0

−Q −AT

b

0


=
[
−(Qb)T −(Ab)T

] A 0

−Q −AT

2k−1 Ab

−Qb


=
[
0 −(Ab)T

] A 0

−Q −AT

 A 0

−Q −AT

2k−3 A 0

−Q −AT

Ab

0


=
[
0 (A2b)T

] A 0

−Q −AT

2k−3A2b

0

 . (Using QAb = 0) (3.34)
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Proceeding in a similar way and using the assumption that QAib = 0 for all 0 6 i 6 k−1, we
infer from equation (3.34) that

CA(2k+1)b =
[
0 (−1)k(Akb)T

] A 0

−Q −AT

(−1)k(Akb)

0

=−(Akb)T Q(Akb) = 0

⇒ QAkb = 0.

Thus, we can write Q
[
b Ab · · · An−1b

]
= 0. However, for a single-input controllable sys-

tem
[
b Ab · · · An−1b

]
is a nonsingular matrix. Therefore, we must have Q = 0. This is a

contradiction and hence the transfer function of ΣHam is a non-zero rational function. Thus,
ΣHam is an autonomous system. �

Note that for a regular LQR problem, ΣHam is known to be autonomous. Thus, all LQR prob-
lems with the underlying system being single-input admit autonomous Hamiltonian system.
Interestingly, this is not the case for multi-input systems: see Example 4.12 and Example 4.13.

(ii) σ(E,H)∩ jR 6= /0 : This is the class of LQR problems that admit Hamiltonian systems
with eigenvalues on the imaginary axis. Since the unmixing condition in Definition 2.18 will
be violated in such a case, we cannot partition the eigenvalues of (E,H) into Lambda-set. How-
ever, taking a cue from [FMX02], we can relax the condition of unmixing for the eigenvalues
of (E,H) on the imaginary axis. Such a relaxation would mean that all the Lambda-sets of
det(sE−H) would contain the eigenvalues of (E,H) on jR. We might still be able to com-
pute the maximal solution of the corresponding LQR LMI using Theorem 2.30. However, the
closed-loop system Σclosed obtained would always admit eigenvalues on the imaginary axis.
This implies that the states of the closed loop system would be periodic in nature and hence,
would not converge to zero. In such a case the functional in equation (3.2) won’t converge.
Therefore, for infinite-horizon LQR problems it is a common practice to implicitly assume
σ(E,H)∩ jR= /0 in order to guarantee solution to the problem at hand.

Interestingly, for the LQR Problem 3.5 with (Q,A) observable, the assumption σ(E,H)∩ jR=

/0 is equivalent to the fact the system Σ does not admit any transmission zeros on the jR. We
establish this in the next lemma.

σ(E,H)∩ jR= /0 if and only if the system Σ has no transmission zeros on jR

Lemma 3.17. Consider the singular LQR Problem 3.5 with Hamiltonian matrix pair
(E,H) as defined in equation (2.11). Define Q =: CTC and let y(t) :=Cx(t), where C ∈
Rr×n with rank(Q) = r. Let the system Σ be (A,B) controllable and (C,A) observable.
Define G(s) :=C(sIn−A)−1B. Then,

jω ∈ σ(E,H) if and only if jω is a transmission zero of G(s).

Proof: Since the system is (A,B) is controllable and (C,A) is observable, without loss of gener-
ality, we can assume a right co-prime factorization of G(s) to be given by G(s) =: N(s)D(s)−1.
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Since G(s) is a column-vector of rational functions, we must have D(s) to be a polynomial (de-
noted by d(s)), and N(s) to be an m×1 vector of polynomials. Note that, with this description

of G(s) =
N(s)
d(s)

, the set of transmission zeros of G(s) is given by the zeros of the polynomial

vector N(s): see [SF77] for the link between zeros and transmission zeros of a system.

From Statement (1) of Lemma 2.29, we know that

det(sE−H) = N(−s)T N(s). (3.35)

Note that jω is a zero of N(s) if and only if jω is a zero of N(−s)T N(s). Using this along with
the fact that zeros of N(s) are the transmission zeros of G(s), we infer from equation (3.35):
jω ∈ σ(E,H) if and only jω is a transmission zero of G(s). �

Thus the assumption that σ(E,H)∩ jR = /0 can be guaranteed by ensuring that the matrix of
rational functions C(sIn−A)−1B has not finite zero on the imaginary axis. This is true for
almost all A,B,C matrices; the word “almost” in the title is added hence.

3.5 Summary

In this chapter, using the subspaces involved in the computation of the maximal rank-minimizing
solution Kmax of an LQR LMI, we characterized the optimal trajectories of a system correspond-
ing to a singular LQR problem. We showed that if the initial condition of the system are written
in a suitable basis (columns of V1Λ and W1 from Theorem 2.30) then the optimal trajectory shows
a nice structure (Lemmas 3.7 and 3.6). Taking a clue from this structure we design controllers
for the system that confines the trajectories of the system to its optimal trajectories. We show
that such controllers need to be PD-controllers (Theorem 3.12). Further, we explicitly charac-
terize the slow and fast subspaces of the singular descriptor system obtained on application of
the proposed PD-control law (Theorem 3.13).

Interestingly, it has been shown in [FN14] and [FN16] that, contrary to the notion that
singular LQR problems cannot be solved using static state-feedback, singular LQR problems
can indeed be solved using static state-feedback law provided such problems admit solutions
to a special form of the ARE called the constrained generalized continuous ARE (CGCARE).
Hence, a natural question is: What is the link between CGCARE and the theory that we have
developed in this chapter? We explore this link in the next chapter.





Chapter 4

Constrained generalized continuous ARE
(CGCARE)

4.1 Introduction

As motivated in Section 3.4 of Chapter 3 a singular LQR problem is known to admit optimal
trajectories from the space of impulsive-smooth distributions. Hence, singular LQR problems
might not be solvable using static state-feedback. However, in [FN14] and [FN16] it has been
established that the singular LQR Problem 2.1 can be solved using static state-feedback if and
only if the problem admits solution to an equation of the following form:AT K +KA+Q− (KB+S)R†(BT K +ST ) = 0

ker R⊆ ker(S+KB).
(4.1)

The condition ker R ⊆ ker(S+KB) in equation (4.1) pertains to the algebraic relations that
the solutions of an LQR LMI, corresponding to a singular LQR problem, has to satisfy. Due
to the presence of an ARE and a set of constrained (algebraic) equations in equation (4.1),
such an equation is known in the literature as the constrained generalized continuous ARE
(CGCARE). Since solvability of CGCARE guarantees solution of a singular LQR problem using
static state-feedback, for the case when a singular LQR problem admits a CGCARE solution the
optimal trajectories are from the space of infinitely differentiable functions. A natural question,
therefore, is: when does a CGCARE admit a solution? In this chapter, we formulate necessary
and sufficient conditions for existence of a solution to the CGCARE. This is the first main result
of this chapter (Theorem 4.8). A direct corollary of this result reveals that a CGCARE admits
a solution only if the determinant of the corresponding Hamiltonian pencil is identically zero.
Another consequence of the first main result of this chapter is that, for a singular LQR problem,
in order for the corresponding CGCARE to have solutions, it is necessary and sufficient that the
Hamiltonian system is non-autonomous with input cardinality precisely equal to the dimension
of nullspace of input cost matrix R.

Having formulated the necessary and sufficient conditions for CGCARE solvability, the

73
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next relevant question is: how often are these conditions satisfied? To this end, in Section
4.4, we first show that the determinant of a Hamiltonian pencil is generically nonzero. This
is the second main result of this chapter (Theorem 4.16). Note that, it is tempting here to
argue that the determinant of a matrix pencil being nonzero is a generic property because it
evaluates to zero over a proper algebraic variety. However, since we are dealing with singular
LQR problems, and since an infinite-horizon LQR problem is generically not singular, loosely
speaking, we need to prove genericity of the determinant of a matrix pencil being nonzero
over a curved hypersurface in the Euclidean space. This makes the problem challenging and
non-trivial. In order to overcome this challenge, we use the notion of genericity based on
perturbation (see Definition 4.15). We elaborate on this in Section 4.4. Finally, using the
second main result (Theorem 4.16), we infer that CGCAREs corresponding to singular infinite-
horizon LQR problems are generically unsolvable. This is the third main result of this chapter
(Theorem 4.22). This result implies that almost all singular LQR problems cannot be solved
using static state-feedback. Hence, singular LQR problems need to be solved using PD state-
feedback controllers as described in Chapter 3. Note that all the results in this chapter are
for multi-input systems and hence we revisit the preliminaries for Hamiltonian systems in the
next section. Although most of the results in the next section (Section 4.2) are known in the
literature, we present these results as lemmas and reprove them for the sake of completeness
and ease of exposition.

4.2 Hamiltonian system for multi-input systems

Recall from Section 2.2.6 that the matrix pair (E,H) is called the Hamiltonian matrix pair
(see equation (2.7)). Similar to equation (2.11), the Hamiltonian system corresponding to the
Hamiltonian matrix pair (E,H) in equation (2.7) is given by the following equation:

In 0 0

0 In 0

0 0 0m,m


︸ ︷︷ ︸

E

d
dt


x

z

u

=


A 0 B

−Q −AT −S

ST BT R


︸ ︷︷ ︸

H


x

z

u

 (4.2)

Then, the output-nulling representation corresponding to the system in equation (4.2) is:

d
dt

x

z

= Â

x

z

+ B̂u, 0 = Ĉ

x

z

+Ru, (4.3)

where Â :=

 A 0

−Q −AT

, B̂ :=

 B

−S

 and Ĉ :=
[
ST BT

]
. We represent the system in equa-

tion (4.3) by ΣHam. In order to present the main results of this chapter we first need to show
that the singular LQR Problem 2.1 can be transformed to a convenient form without loss of
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generality. Hence, in the next lemma, we show how Problem 2.1 can be transformed to such a
convenient form using a change of basis on the input space of the system. Note that for a given
singular LQR Problem 2.1, since R is symmetric, there exists a orthogonal matrix U ∈ Rm×m

such that UT RU =
[

0 0
0 R̂

]
, where R̂ = R̂T ∈Rr×r and R̂ is nonsingular. We use such orthogonal

matrices to define a transformation on the input-space of the system Σ defined in Problem 2.1.
This leads to a transformed form of the LQR Problem 2.1 which we use in the sequel.

A method to transform the singular LQR Problem 2.1 to a convenient form

Lemma 4.1. Consider the singular LQR Problem 2.1 where rank(R) =: r< m. Let U ∈
Rm×m be an orthogonal matrix such that UT RU = diag(0, R̂), where R̂∈Rr×r and R̂> 0.
Define BU =:

[
B1 B2

]
and SU =:

[
S1 S2

]
, where B1,S1 ∈Rn×(m−r) and B2,S2 ∈Rn×r.

Then, the following statements hold:

(1)

Q S

ST R

> 0⇔

S1 = 0,

Q−S2R̂−1ST
2 > 0.

(2) u∗ is a solution to the singular LQR Problem 2.1 if and only if UT u∗ :=col(u∗1,u
∗
2)

minimizes

J(x0,u) :=
∫

∞

0


x

u1

u2


T 

Q 0 S2

0 0 0

ST
2 0 R̂




x

u1

u2

dt. (4.4)

(3) K = KT ∈Rn×n is a solution of the CGCARE (4.1) if and only if K is a solution of the
following equations

AT K+KA+Q−(KB2+S2)R̂−1(BT
2 K+ST

2 )=0, and KB1 = 0. (4.5)

Proof: (1): Define L :=
[

In 0
0 U

]
∈ R(n+m)×(n+m). It is evident that LT

[
Q S
ST R

]
L =

[ Q S1 S2
ST

1 0 0
ST

2 0 R̂

]
.

Since L is invertible and symmetric, by Sylvester’s law of inertia, it follows that

Q S

ST R

> 0 if and only if


Q S1 S2

ST
1 0 0

ST
2 0 R̂

> 0. (4.6)

Since R̂ > 0, taking Schur complement with respect to R̂ it follows that
Q S1 S2

ST
1 0 0

ST
2 0 R̂

> 0 if and only if

Q−S2R̂−1ST
2 S1

ST
1 0

> 0⇔

S1 = 0, and

Q−S2R̂−1ST
2 > 0.

(4.7)
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Thus, from equation (4.6) and equation (4.7), Statement (1) follows.
(2): Clearly, for all col(x(t),u(t)) that satisfies the state-space system dynamics d

dt x=Ax+Bu,

∫
∞

0

x

u

T Q S

ST R

x

u

dt =
∫

∞

0

 x

UT u

T


Q 0 S2

0 0 0

ST
2 0 R̂


 x

UT u

dt.

Thus, u∗ is a solution to the singular LQR Problem 2.1 if and only if UT u∗ is a solution to the
singular LQR Problem 4.4.
(3): Since K is a solution to the CGCARE (4.1), we have

AT K +KA+Q− (KB+S)R†(BT K +ST ) = 0

⇔ AT K +KA+Q− (KB+S)U

0 0

0 R̂−1

UT (BT K+ST ) = 0

⇔ AT K+KA+Q−(KB2 +S2)R̂−1(BT
2 K +ST

2 ) = 0.

Further, we also have

ker R⊆ ker(S+KB)⇔ ker(UT RU)⊆ ker(UT (S+KB)U)

⇔ ker

0 0

0 R̂

⊆ ker
[
KB1 KB2 +S2

]
⇔ KB1 = 0.

This completes the proof of the lemma. �

Hence the singular infinite-horizon LQR Problem 2.1 can be rewritten in terms of the new input
ũ as follows:

Problem 4.2. Consider a system with state-space dynamics d
dt x = Ax+

[
B1 B2

]u1

u2

, where

A ∈ Rn×n, B1 ∈ Rn×(m−r), B2 ∈ Rn×r. Then, for every initial condition x0, find an input ũ :=
col(u1,u2) that minimizes the functional

J(x0, ũ) :=
∫

∞

0


x

u1

u2


T 

Q 0 S2

0 0 0

ST
2 0 R̂




x

u1

u2

dt, where


Q 0 S2

0 0 0

ST
2 0 R̂

> 0, R̂ ∈ Rr×r, and R̂ > 0. (4.8)

Clearly, the CGCARE corresponding to the transformed LQR Problem 4.2 is given by
equation (4.5). Further, the Hamiltonian system (4.2) corresponding to the transformed LQR
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Problem 4.2 is:
In 0 0 0

0 In 0 0

0 0 0m−r,m−r 0

0 0 0 0r,r


︸ ︷︷ ︸

Ê

d
dt


x

z

u1

u2

=


A 0 B1 B2

−Q −AT 0 −ST
2

0 BT
1 0 0

ST
2 BT

2 0 R̂


︸ ︷︷ ︸

Ĥ


x

z

u1

u2

 (4.9)

Since R̂ is nonsingular in equation (4.9), we can eliminate u2 from the equation: this gives the
following system of differential-algebraic equations (DAEs) equivalent to equation (4.9):

In 0 0

0 In 0

0 0 0m−r,m−r


︸ ︷︷ ︸

Er

d
dt


x

z

u1

=


Ã −M̃ B1

−Q̃ −ÃT 0

0 BT
1 0


︸ ︷︷ ︸

Hr


x

z

u1

 , (4.10)

where Ã := A−B2R̂−1ST
2 , M̃ := B2R̂−1BT

2 and Q̃ := Q− S2R̂−1ST
2 . We call the matrix pair

(Er,Hr), the reduced Hamiltonian pencil and the system governed by the DAEs in equa-
tion (4.10) the reduced Hamiltonian system. The output-nulling representation of the reduced
Hamiltonian system (4.10) is therefore given by the following equations:

d
dt

x

z

= Ar

x

z

+Bru1 and 0 =Cr

x

z

 , (4.11)

where Ar :=

 Ã −M̃

−Q̃ −ÃT

∈R2n×2n, Br :=

B1

0

∈R2n×(m−r) and Cr :=
[
0 BT

1

]
∈R(m−r)×2n.

In what follows, we establish a relation among the Hamiltonian matrix pair (E,H) cor-
responding to LQR Problem 2.1 (equation (4.2)), the Hamiltonian matrix pair (Ê, Ĥ) corre-
sponding to the transformed LQR Problem 4.2 (equation (4.9)) and the matrix pair (Er,Hr)

corresponding to the reduced Hamiltonian system in equation 4.10.

Relation between the characteristic polynomials of (E,H), (Ê,Ĥ), and (Er,Hr)

Lemma 4.3. Let the matrix pairs (E,H), (Ê, Ĥ), and (Er,Hr) be as defined in equations
(4.2), (4.9), and (4.10), respectively, with the transformation from (E,H) to (Ê, Ĥ) being
done through an orthogonal matrix U ∈ Rm×m as in Lemma 4.1. Then,

det(sE−H) = det(sÊ− Ĥ) = (−1)rdet(R̂)×det(sEr−Hr). (4.12)

Proof: Recall from Lemma 4.1 that the orthogonal matrix U ∈ Rm×m is such that UT RU =

diag
(

0m−r,m−r, R̂
)

, BU =
[
B1 B2

]
, and SU =

[
0n,m−r S2

]
. Define V := diag(In, In,U) ∈
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R(2n+m)×(2n+m) . It is easy to verify that

V T HV =


In 0 0

0 In 0

0 0 UT




A 0 B

−Q −AT −S

ST BT R




In 0 0

0 In 0

0 0 U

=


A 0 B1 B2

−Q −AT 0 −S2

0 BT
1 0 0

ST
2 BT

2 0 R̂

= Ĥ,

(4.13)

V T EV =


In 0 0

0 In 0

0 0 UT




In 0 0

0 In 0

0 0 0m,m




In 0 0

0 In 0

0 0 U

=


In 0 0

0 In 0

0 0 0m,m

= Ê. (4.14)

Since V is orthogonal, det(V ) = ±1. Therefore, using equation (4.13) and equation (4.14) to
compute det(sE−H), we have

det(sE−H)=det(sV ÊV T −V ĤV T )=det(V )det(sÊ− Ĥ)det(V T )=det(sÊ− Ĥ). (4.15)

Next, define

Z1 :=


In 0 0 0

0 In 0 0

0 0 Im−r 0

−R̂−1ST
2 −R̂−1BT

2 0 Ir

 , and Z2 :=


In 0 0 −B2R̂−1

0 In 0 S2R̂−1

0 0 Im−r 0

0 0 0 Ir

 .

Clearly, det(Z2) = det(Z1) = 1. Further, Z2ÊZ1 = diag(Er,0r,r) and Z2ĤZ1 = diag(Hr, R̂).
Upon defining Ẽ := NÊM, and H̃ := NĤM, we get

det(sÊ− Ĥ) = det(sẼ− H̃) = (−1)rdet(R̂)×det(sEr−Hr). (4.16)

Equation (4.15) and equation (4.16) together gives equation (4.12). �

Another result that would be required for the main theorem of this section is the relation between
transfer function G(s) of a system and the corresponding Hamiltonian pencil (E,H). This is a
generalization of Lemma 2.29 to the multi-input case.
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Relation between Popov’s function G(−s)T G(s) and σ(E,H)

Lemma 4.4. Consider the singular LQR Problem 2.1. Assume
[

Q S
ST R

]
=:
[

CT

DT

]
[C D ],

where C ∈ Rp×n, D ∈ Rm×m, and
[
C D

]
is full row-rank. Define G(s) := C(sIn −

A)−1B+D. Let G(s) =:
N(s)
d(s)

, where d(s) := det(sIn−A) and N(s) ∈ R[s]p×m. Define

rootnum
(
G(−s)T G(s)

)
:= roots

(
det

[
N(−s)T N(s)

])
. Let the corresponding Hamil-

tonian pencil pair (E,H) be as given in equation (4.2). Then, the following statements
hold:

(1) G(−s)T G(s) = Ĉ(sI2n− Â)−1B̂+R.

(2) rootnum
(
G(−s)T G(s)

)
= σ(E,H).

Further, if σ(E,H)∩ jR= /0, then det(sE−H) admits a Lambda-set.

Proof: (1): Note that G(−s)T =−BT (sIn+AT )−1CT . Using this fact we have

Ĉ(sI2n− Â)−1B̂ =
[
0 BT

]sIn−A 0

Q sIn+AT

−1B

0


=
[
0 BT

] (sIn−A)−1 0

−(sIn+AT )−1CTC(sIn−A)−1 (sIn+AT )−1

B

0


=−BT (sIn+AT )−1CTC(sIn−A)−1B = G(−s)T G(s).

(2): Note that we can write det(sE−H) as follows:

det(sE−H) = det

sI2n− Â −B̂

−Ĉ −R

= det(sI2n− Â)×det
(
−R−Ĉ(sI2n− Â)−1B̂

)
= det(sI2n− Â)× (−1)mdet

(
G(−s)T G(s)

)
= (−1)m×det(sI2n− Â)×

det
(

R×det(sI2n− Â)+Ĉadj(sI2n− Â)B̂
)

det(sI2n− Â)

= (−1)m×det
(

R×det(sI2n− Â)+Ĉadj(sI2n− Â)B̂
)
. (4.17)

From Statement (1) of this lemma, we have

G(−s)T G(s) =

(
Ĉadj(sI2n− Â)B̂

)
B̂

det(sI2n− Â)
+R =

R×det(sI2n− Â)+Ĉadj(sI2n− Â)B̂

det(sI2n− Â)

=
R×det(sI2n− Â)+Ĉadj(sI2n− Â)B̂

d(−s)d(s)
. (4.18)



80 Chapter 4. Constrained generalized continuous ARE (CGCARE)

Since G(s) = N(s)
d(s) , we must have G(−s)T G(s) = N(−s)T N(s)

d(−s)d(s) . Therefore, from equation (4.18)
we have

N(−s)T N(s) = R×det(sI2n− Â)+Ĉadj(sI2n− Â)B̂. (4.19)

Using equation (4.19) in equation (4.17), we have

det(sE−H) = (−1)m×det
[
N(−s)T N(s)

]
⇒ σ(E,H) = rootnum

(
G(−s)T G(s)

)
. (4.20)

This completes the proof of Statement (2) of the lemma.
Note that if λ ∈ roots

(
det

[
N(−s)T N(s)

])
, then−λ ∈ roots

(
det

[
N(−s)T N(s)

])
. Fur-

ther, since det
[
N(−s)T N(s)

]
∈ R[s], if λ ∈ roots

(
det

[
N(−s)T N(s)

])
, then we must have

λ̄ ∈ roots
(
det

[
N(−s)T N(s)

])
. Thus, the roots of det

[
N(−s)T N(s)

]
are symmetric about

the real and imaginary-axis of the C-plane. Therefore, det
[
N(−s)T N(s)

]
is a even-degree

polynomial. From Statement (2) we know that σ(E,H) = roots
(
det

[
N(−s)T N(s)

])
. There-

fore, det(sE −H) is a even-degree polynomial as well. Let degdet(sE −H) =: 2ns. Since
σ(E,H)∩ jR= /0⇒ roots

(
det

[
N(−s)T N(s)

])
∩ jR= /0, we must have ns roots of det(sE−

H) in C− and the rest ns in C+. By the Definition of Lambda-sets in Definition 2.18, the col-
lection of the roots of det(sE−H) in C− is a Lambda-set of det(sE−H). �

Now that we have proved some of the auxiliary results required in this chapter, in the next
section we answer the question: When is the CGCARE solvable? Recall that the LQR LMI
corresponding to LQR Problem 2.1 is given by:

L (K) :=

AT K +KA+Q KB+S

BT K +ST R

> 0. (4.21)

An important result related to the rank of the LQR LMI (4.21), proposed in [Sch83], is crucially
required to formulate conditions on solvability of CGCARE in the next section. We present this
result as a proposition next for ease of reference.

Proposition 4.5. [Sch83, Theorem 1] Consider the LQR LMI (4.21) and the transfer function
G(s) as defined in Lemma 4.4. The minimal rank of L (K), where K varies over the set of
symmetric matrices satisfying L (K)> 0, is equal to nrank(G(s)).

Another result in [Sch83] related to the normal rank of a matrix with rational functions as
element is required in this chapter and we present it next (see [Sch83, Lemma 2] for a proof).
Before that we define normal rank of a matrix with rational functions.

Definition 4.6. [Kai80, Section 6.3] The normal rank of a rational polynomial matrix G(s) ∈
R(s)n×p, represented by nrank(G(s)), is defined as

nrank(G(s)) : = max{rank(G(λ )) |λ ∈ C and G(s) is analytic at λ}
= max{rank(G(λ )) |λ ∈ jR and G(s) is analytic at λ} .

Proposition 4.7. [Sch83, Lemma 2] Consider W (s) ∈ R(s)p×p. Then,

nrank(W (s)) = nrank
(
W (−s)TW (s)

)
.
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4.3 Conditions for solvability of CGCARE

In this section we answer the first question we raised in Section 4.1: when is a CGCARE
solvable? The next theorem, the first main result of this chapter, provides a set of necessary and
sufficient conditions for the solvability of the CGCARE (4.5).

Necessary and sufficient conditions for the solvability of CGCARE

Theorem 4.8. Consider the singular LQR Problem 2.1 and the transformed LQR Prob-
lem 4.2. Let the Hamiltonian pencil pair (E,H) be as defined in equation (4.2), and
the corresponding reduced Hamiltonian system be as given in equation (4.10). Assume[

Q S
ST R

]
=:
[

CT

DT

]
[C D ], where C ∈Rp×n, D∈Rm×m, and

[
C D

]
is full row-rank. Define

G(s) := C(sIn−A)−1B+D and Q̃ := Q−S2R̂−1ST
2 . Then, the following statements are

equivalent:

(1) CGCARE (4.1) admits a solution.

(2) CGCARE (4.5) admits a solution.

(3) nrank(G(s)) = rank(D).

(4) nrank(sE−H) = 2n+rank(R).

(5) Cr(sI2n−Ar)
−1Br = 0.

(6) CrA`
rBr = 0, for all ` ∈ N.

(7) Q̃ÃkB1 = 0, for all k ∈ N.

Proof: (1)⇔ (2): This follows from Statement (3) of Lemma 4.1.
(2) ⇒ (3): The LQR LMI corresponding to the transformed LQR Problem 4.2 takes the
following form:

Ltran(K) :=


AT K +KA+Q KB1 KB2 +S2

BT
1 K 0 0

BT
2 K +ST

2 0 R̂

> 0. (4.22)

Hence the underlying LMIs corresponding to the CGCAREs (4.1) and (4.5) are given by the
inequalities (4.21) and (4.22), respectively. Define Z1 := diag(In,U) ∈ R(n+m)×(n+m), where
UT RU = diag(0m−r,m−r, R̂). Then, pre- and post-multiplying L (K) with ZT

1 and Z1, respec-
tively gives

ZT
1 L (K)Z1 =

In 0

0 UT

AT K +KA+Q KB+S

BT K +ST R

In 0

0 U

= Ltran(K) (4.23)
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Since Z1 is nonsingular and ZT
1 L (K)Z1 is symmetric, by Sylvester’s law of inertia we have

from equation (4.23)

rank(L (K)) = rank(Ltran(K)). (4.24)

Further, define Z2 :=

[
In 0 0
0 Im−r 0

−R̂−1(BT
2 K+ST

2 ) 0 Ir

]
. Then, we have

ZT
2 Ltran(K)Z2 =


R(K) KB1 0

BT
1 K 0 0

0 0 R̂

=: Lred(K), (4.25)

where R(K) := AT K + KA + Q− (KB2 + S2)R̂−1(BT
2 K + ST

2 ). Since Z2 is nonsingular and
ZT

2 Ltran(K)Z2 is symmetric, from equation (4.24) and equation (4.25), using Sylvester’s law
of inertia, we have

rank(L (K)) = rank(Ltran(K)) = rank(Lred(K)). (4.26)

Further, note that for any K = KT ∈ Rn×n, from equation (4.25) we infer that

rank(Lred(K))> rank(R̂) (4.27)

Let Ko be a solution to the CGCARE (4.1), i.e. R(Ko) = 0 and KoB1 = 0. Then, by equation
(4.25), Lred(K) evaluated at K = Ko gives rank(Lred(Ko)) = rank(R̂). Using this fact along
with equation (4.25), we have

rank(Lred(Ko)) = rank(R̂) = rank(D) = rank(L (Ko)). (4.28)

Thus, from equation (4.27) and equation (4.28) it is evident that the minimum rank of L (K)

among all symmetric matrices K that satisfies L (K)> 0 is achieved at the solutions of its corre-
sponding CGCARE (4.1). Hence, using Proposition 4.5 we have rank(L (Ko))= nrank(G(s)).
Using this fact in equation (4.28) we have rank(L (Ko)) = rank(D) = nrank(G(s)).
(3)⇒ (2): Since nrank(G(s)) = rank(D) = rank(R), from Proposition 4.5 it is clear that the
minimum rank that can be attained by L (K) is rank(R). From equation (4.25) and equation
(4.26) it is clear that rank(L (K)) = rank(Lred(K)) = rank(R) only if there exists a K such
that R(K) = AT K +KA+Q− (KB2 + S2)R̂−1(BT

2 K + ST
2 ) = 0 and KB1 = 0. In other words,

nrank(G(s)) = rank(D) implies that there exists a K that solves the CGCARE (4.1).
(3) ⇔ (4): From Statement (1) of Lemma 4.4, we have G(−s)T G(s) = Ĉ(sI2n− Â)−1B̂+R,
where Â, B̂, and Ĉ are as defined in equation (4.3). Further, from Proposition 4.7 it is evident
that nrank(G(s)) = nrank(G(−s)T G(s)). Therefore, we have

nrank(G(s)) = nrank
(
G(−s)T G(s)

)
= nrank

(
Ĉ(sI2n− Â)−1B̂+R

)
(4.29)
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Define the nonsingular matrices

U1 :=

 I2n 0

Ĉ(sI2n− Â)−1 Im

 , and U2 :=

I2n (sI2n− Â)−1B̂

0 Im

 .
Recall that sE −H =

[
sI2n−Â −B̂
−Ĉ −R

]
. Therefore, pre-multiplying (sE −H) with U1 and post-

multiplying it with U2, we have

U1(sE−H)U2 =

sI2n− Â 0

0 −Ĉ(sI2n− Â)−1B̂−R

 (4.30)

Since U1 and U2 are nonsingular and nrank(sI2n− Â) = 2n, from equation (4.30) we have

nrank(sE−H) = nrank(U1(sE−H)U2) = nrank(sI2n− Â)+nrank
(

Ĉ(sI2n− Â)−1B̂+R
)

= 2n+nrank
(
G(−s)T G(s)

)
(4.31)

Using equation (4.29) and equation (4.31), we therefore infer that

nrank(G(s)) = rank(D)⇔ nrank
(
G(−s)T G(s)

)
= rank(R)

⇔ nrank(sE−H) = 2n+rank(R).

(4)⇔ (5): Define the matrices

Z1 :=


In 0 0 −B2R̂−1

0 In 0 S2R̂−1

0 0 Im−r 0

0 0 0 Ir

 , Z2 :=


In 0 0 0

0 In 0 0

0 0 Im−r 0

−R̂−1ST
2 −R̂−1BT

2 0 Ir

 .

It is easy to verify that

Z1HZ2=


A−B2R̂−1ST

2 −B2R̂−1BT
2 B1 0

−Q+S2R̂−1ST
2 −(A−B2R̂−1ST

2 )
T 0 0

0 BT
1 0 0

0 0 0 R̂

=
Hr 0

0 R̂

 , Z1EZ2 =

Er 0

0 0r,r

 .

Therefore, Z1(sE−H)Z2 = diag
(

sEr−Hr,−R̂
)

. Since Z1 and Z2 are nonsingular matrices,
we have nrank(sE−H) = nrank(Z1(sE−H)Z2). Thus,

nrank(sE−H) = nrank

sEr−Hr 0

0 −R̂

= 2n+rank(R)⇔ nrank(sEr−Hr) = 2n.

(4.32)
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Define the nonsingular matrices

U3 :=

 I2n 0

Cr(sI2n−Ar)
−1 Im−r

 , and U4 :=

I2n (sI2n−Ar)
−1Br

0 Im−r

 .
Therefore, pre- and post-multiplying (sEr−Hr) with U3 and U4, respectively we have

U3 (sEr−Hr)U4 =

sI2n−Ar 0

0 −Cr(sI2n−Ar)
−1Br

 (4.33)

Using equation (4.33) to compute nrank(sEr−Hr) we have

nrank(sEr−Hr) = nrank(U3 (sEr−Hr)U4)

= nrank

sI2n−Ar 0

0 −Cr(sI2n−Ar)
−1Br


= nrank(sI2n−Ar)+nrank

(
Cr(sI2n−Ar)

−1Br

)
(4.34)

Since nrank(sI2n−Ar) = 2n, using equation (4.32) and equation (4.34) we infer that

nrank(sEr−Hr) = 2n⇔ nrank
(
Cr(sI2n−Ar)

−1Br

)
= 0⇔Cr(sI2n−Ar)

−1Br = 0. (4.35)

Thus, from equation (4.32) and equation (4.35), we have Statement (4)⇔ Statement (5).
(5)⇔ (6): The impulse response corresponding to Cr(sI2n−Ar)

−1Br is given by

h(t) :=CreArtBr =

∞∑
`=0

t`

`!
CrA`

rBr.

Therefore, it is clear that Cr(sI2n−Ar)
−1Br = 0 if and only if CrA`

rBr = 0 for all ` ∈ N.
(6)⇒ (7): We prove this using induction.
Base case:(k = 0) For `= 1, from Statement (6) we have

CrArBr = 0⇒
[
0 BT

1

] Ã −B2R̂−1BT
2

−Q̃ −ÃT

B1

0

= 0⇒ BT
1 Q̃B1 = 0.

From Statement (1) of Lemma 4.1, we know that Q̃ = Q− S2R̂−1ST
2 > 0. Hence, using the

property of positive-semidefinite matrices we have BT
1 Q̃B1 = 0⇒ Q̃B1 = 0.
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Induction step: Assume Q̃ÃiB1 = 0 for 06 i6 (k−1). We prove that Q̃ÃkB1 = 0.

CrA(2k+1)
r Br =

[
0 BT

1

] Ã −B2R̂−1BT
2

−Q̃ −ÃT

 Ã −B2R̂−1BT
2

−Q̃ −ÃT

2k−1 Ã −B2R̂−1BT
2

−Q̃ −ÃT

B1

0


=
[
−(Q̃B1)

T −(ÃB1)
T
] Ã −B2R̂−1BT

2

−Q̃ −ÃT

2k−1 ÃB1

−Q̃B1


=
[
0 −(ÃB1)

T
] Ã −B2R̂−1BT

2

−Q̃ −ÃT

 Ã −B2R̂−1BT
2

−Q̃ −ÃT

2k−3 Ã −B2R̂−1BT
2

−Q̃ −ÃT

ÃB1

0


=
[
−(Q̃ÃB1)

T (Ã2B1)
T
] Ã −B2R̂−1BT

2

−Q̃ −ÃT

2k−3 Ã2B1

−Q̃ÃB1


=
[
0 (Ã2B1)

T
] Ã −B2R̂−1BT

2

−Q̃ −ÃT

2k−3Ã2B1

0

 . (4.36)

Proceeding in a similar way and using the assumption that Q̃ÃiB1 = 0 for all 0 6 i 6 (k− 1),
we infer from equation (4.36) that

CrA(2k+1)
r Br =

[
0 (−1)k(ÃkB1)

T
] Ã −B2R̂−1BT

2

−Q̃ −ÃT

(−1)k(ÃkB1)

0

=−(ÃkB1)
T Q̃(ÃkB1).

(4.37)

We know from Statement (6) that CrA(2k+1)
r Br = 0. Therefore, from equation (4.37) we get

(ÃkB1)
T Q̃(ÃkB1) = 0. From Statement (1) of Lemma 4.1 we know that Q̃> 0 and hence, from

equation (4.37) we get Q̃ÃkB1 = 0. This completes the proof.
(7)⇒ (6): We first claim that A`

rBr = col
(

Ã`B1,0
)

. We prove this using induction.
Base case: (`= 0) Br = col(B1,0) is true trivially.
Induction step: Assume A`

rBr = col(Ã`B1,0), we prove that A`+1
r Br = col(Ã`+1B1,0).

A`+1
r Br =

 Ã −B2R̂−1BT
2

−Q̃ −ÃT

`+1B1

0

=

 Ã −B2R̂−1BT
2

−Q̃ −ÃT

Ã`B1

0

=

 Ã`+1B1

−Q̃Ã`B1

 .
(4.38)

Since, Q̃ÃkB1=0 for all k∈N. Therefore, from equation (4.38) we get A`+1
r Br=col(Ã`+1B1,0).

Hence, by mathematical induction we infer that A`
rBr = col(Ã`B1,0) for all ` ∈ N. Therefore,

for all ` ∈ N, we have CrA`
rBr = [0 BT

1 ]
[

Ã`B1
0

]
= 0. �

Statement (4) of Theorem 4.8 leads to a necessary condition for the solvability of a CGCARE
that reveals interesting system-theoretic interpretations about the systems that admit CGCARE
solutions. We present this necessary condition as a corollary next. This corollary would be
crucially used to prove the second main result of this chapter (Theorem 4.16).
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A necessary condition for the solvability of CGCARE

Corollary 4.9. Consider the singular LQR Problem 2.1 with its corresponding Hamilto-
nian pencil pair (E,H) as defined in equation (4.2). If the corresponding CGCARE (4.1)
admits a solution, then det(sE−H) is the zero polynomial.

Proof: Since (sE−H) ∈ R[s](2n+m)×(2n+m) and rank(R) < m, from Statement (4) of Theorem
4.8 we must have det(sE−H) = 0. �

Theorem 4.8 and Corollary 4.9 bring out some interesting facts pertaining to the optimal trajec-
tories of singular LQR problems and hence, we briefly discuss these facts next.

Note that for a single-input controllable system we have rank
[
b Ab · · · An−1b

]
= n.

However, from Theorem 4.8 we know that CGCARE is solvable if and only if QAib = 0 for all
i ∈N. Thus, we must have Q = 0. Hence, for single-input singular LQR problems CGCARE is
solvable only for the trivial case when Q = 0. Hence, we have the following corollary

Single-input singular LQR problems do not admit CGCARE solution

Corollary 4.10. Consider the singular LQR Problem 2.21 with Q 6= 0. Then, the corre-
sponding CGCARE does not admit any solution.

Proof: The proof follows from the discussion above this corollary. �

As motivated earlier the DAEs in equation (4.2) arise on application of PMP to the LQR
problem. It follows from PMP that, for the regular case, the optimal solutions of the LQR prob-
lem are nothing but suitably chosen trajectories of the Hamiltonian system (these are the optimal
trajectories corresponding to a Lambda-set Λ of the Hamiltonian pencil such that σ(Λ)(C−).
For the singular case, since the Hamiltonian system becomes a singular descriptor system, PMP
becomes applicable only to the smooth trajectories of the Hamiltonian system. Let us assume
that (x∗,z∗,u∗) ∈ C∞(R,R2n+p) be a trajectory in the Hamiltonian system. All such trajecto-
ries are called the stationary trajectories. For a regular LQR problem, since det(sE−H) 6= 0,
from Proposition 2.17 we infer that the Hamiltonian system is autonomous. Further, it is known
that the trajectories of an autonomous system are smooth but not compactly supported (expo-
nential). Hence, the stationary trajectories in case of regular LQR problems are all smooth
but not compactly supported. To the contrary, from Lemma 4.4 it is clear that the condition
det(sE−H) = 0 from Corollary 4.9 means that the transfer function G(s) = Ĉ(sI2n− Â)−1B̂
is not invertible as a rational matrix. Hence, by Proposition 2.17 we infer that the Hamiltonian
system is non-autonomous. Hence, the stationary trajectories corresponding to such problems
are compactly supported and smooth. However, this non-autonomy of the Hamiltonian system
is only necessary, and not sufficient, for CGCARE solvability. Accordingly, the necessary and
sufficient condition in this regard can be inferred from Theorem 4.9, which is as follows. The
non-autonomy of the Hamiltonian system implies that it admits inputs. Theorem 4.9 reveals
that CGCARE solvability is equivalent to the input cardinality of the Hamiltonian system being
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precisely equal to m−rank(R) (see [TMR09] for more on non-autonomous systems and input
cardinality).

Now that we have found the solvability conditions for a CGCARE we present an inter-
esting property of the solutions of a CGCARE. It is clear from the definition of CGCARE that
for a symmetric matrix K to be a solution of CGCARE (4.5), K must satisfy the linear matrix
equation KB1 = 0. Interestingly, apart from such linear matrix equations any solution K of the
CGCARE (4.5) must satisfy certain other algebraic relations also; this is the content of the next
lemma.

Algebraic relations satisfied by the solutions of a CGCARE

Lemma 4.11. Consider the singular LQR Problem 4.2 with the corresponding reduced
Hamiltonian system be as given in equation (4.10). Let K = KT ∈ Rn×n be a solution to
the corresponding CGCARE (4.5). Then,

KÃiB1 = 0, for all i ∈ N. (4.39)

Proof: We use mathematical induction for the proof.
Base case: (i = 0) Since K is a solution of CGCARE (4.5), it is evident that KB1 = 0.
Induction step: Assume KÃiB1 = 0. We prove that KÃi+1B1 = 0. Note that solution K of the
CGCARE must satisfy

AT K +KA+Q− (KB2 +S2)R̂−1(BT
2 K +ST

2 ) = 0

⇒ AT K +KA+Q−KB2R̂−1BT
2 K−KB2R̂−1ST

2 −S2R̂−1BT
2 K−S2R̂−1ST

2 = 0

⇒ (A−B2R̂−1ST
2 )

T K +K(A−B2R̂−1ST
2 )+(Q−S2R̂−1ST

2 )−KB2R̂−1BT
2 K = 0

⇒ ÃT K +KÃ+ Q̃−KB2R̂−1BT
2 K = 0. (4.40)

Post-multiplying equation (4.40) by ÃiB1, we have

ÃT KÃiB1 +KÃi+1B1 + Q̃ÃiB1−KB2R̂−1BT
2 KÃiB1 = 0. (4.41)

Since CGCARE (4.5) admits a solution, from Statement (7) of Theorem 4.8 it is evident that
Q̃ÃiB1 = 0. In addition to this using the induction hypothesis KÃiB = 0 on equation (4.41), we
have KÃi+1B1 = 0. This completes the proof of this lemma. �

Recall that all the results in Chapter 2 and Chapter 3 are true only for the case when det(sE−
H) 6= 0. However, from Corollary 4.9 we know that a necessary condition for the solvability of
a CGCARE is det(sE−H) = 0. Therefore, the results in the preceding chapters (Chapters 2
and 3) cannot be applied to the case when a singular LQR problem admits CGCARE solutions.
Further, for the single-input case, the reduced Hamiltonian system (4.10) and the transformed
Hamiltonian system in equation (4.9) is the same. This leads to some interesting comparison
between the results of this section and some of the results obtained in Chapter 2. We present
this in Table 4.1.

Now we provide examples to demonstrate the results derived in this section. The first
example demonstrates that det(sE−H) being a zero polynomial is a necessary condition for
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Results from Chapter 2
Results from Chapter 4

(adapted to the single-input case)

Assumption:

σ(E,H)∩ jR= /0 and det(sE−H) 6= 0.

Necessary condition (Corollary 4.9):

det(sE−H) = 0

Lemma 2.36
ĈÂkb̂ = 0

for k ∈ {0,1, . . . ,2(nf−1)} Theorem 4.8
ĈÂkb̂ = 0

for all k ∈ N
QA`b = 0

for ` ∈ {0,1, . . . ,nf−2}
QA`b = 0

for all ` ∈ N

Lemma 2.37
KAib = 0 for i ∈ {0,1, . . . ,nf−1},
where K satisfies LQR LMI (2.9)

Lemma 4.11
KAib = 0 for all i ∈ N,

where K satisfies CGCARE (4.1)

Table 4.1: Comparison of the results in Chapter 2 with the results from Chapter 4 adapted to
single-input systems.

CGCARE to admit a solution. We use the example used in [NF19, Example 6.4] to demonstrate
Theorem 4.9.

Example 4.12. Consider the singular LQR problem with

Q =


1 0 −1

0 0 0

−1 0 1

 , S =


0 1

0 0

0 −1

 , and R =

0 0

0 1

 .

The system dynamics is d
dt x =


1 1 1

−3 1 0

1 0 0

x+


2 0

0 0

0 1

u. Here B1 =


2

0

0

, B2 =


0

0

1

, S1 =


0

0

0

, S2 =


1

0

−1

 and R̂ = 1. The solutions to the CGCARE (4.1) for this problem are K1 =

diag(0,0,0) and K2 = diag(0,0,2). On simple computation it can be verified that correspond-
ing to this problem the Hamiltonian pencil is singular, i.e., det(sE−H) = 0.

Note that Ã = A−B2R̂−1ST
2 =


1 1 1

−3 1 0

0 0 0

. Therefore, Q̃ = Q− S2R̂−1ST
2 = 03,3. It is

evident that for all i ∈ N, we have in this example K1ÃiB1 = 0, K2ÃiB1 = 0, and Q̃ÃiB1 = 0.

The next example shows that det(sE−H) = 0 is not a sufficiency condition for the CG-
CARE to admit a solution.
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Example 4.13. Consider the singular LQR problem with

Q =


1 1 0

1 1 0

0 0 1

 , S =


0 0 0

0 0 0

0 0 0

 , and R =


0 0 0

0 0 0

0 0 1

 .

The system dynamics is d
dt x =


1 2 0

0 1 0

0 0 1

x+


1 1 0

0 1 0

0 0 1

u. For this problem it can be verified

that det(sE−H) = 0. Here B1 =


1 1

0 1

0 0

 and B2 =


0

0

1

.

The constrained equation of the CGCARE corresponding to this problem is K


1 1

0 1

0 0

= 0.

The solution to this equation is K = diag(0,0,k) for all k ∈ R. Therefore, the ARE corre-
sponding to the CGCARE for this problem with K = diag(0,0,k) is given by AT K +KA+Q−
KB2R̂−1BT

2 K = 0, i.e.,
1 2 0

0 1 0

0 0 1


T

0 0 0

0 0 0

0 0 k

+


0 0 0

0 0 0

0 0 k




1 2 0

0 1 0

0 0 1

+


1 1 0

1 1 0

0 0 1

−


0 0 0

0 0 0

0 0 k




0

0

1




0

0

1


T

0 0 0

0 0 0

0 0 k

=03,3

⇒


1 1 0

1 1 0

0 0 −k2 +2k+1

=03,3.

Thus, no value of k satisfies the above equation. Therefore, the CGCARE does not admit a

solution. Note that here Q̃ = Q and Ã =


1 2 0

0 1 0

0 0 0

. Evidently, Q̃ÃB1 =


1 4

1 4

0 0

 6= 0.

4.4 Genericity of CGCARE insolubility among all singular
LQR problems

In this section we answer the second question we raised in Section 4.1: how often are the neces-
sary and sufficient conditions for CGCARE solvability satisfied?, i.e., how often are CGCAREs
solvable? We show in this section that the CGCARE (4.1), corresponding to the singular LQR
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Problem (2.1), is generically unsolvable. Note that there are several formal notions of gener-
icity in the literature, which are not necessarily equivalent [HK10], [SP76]. Genericity often
involves the idea that a property over a set holds with probability 1, where the probability is
suitably defined. From this perspective, genericity of a property over a Euclidean space is often
defined in terms of an algebraic variety. However, the difficulty that we face in this section is
that the set over which the property is defined, i.e., the set from where the samples are collected
(sample space), is itself a measure zero set in a Euclidean space. Hence, for the problem in this
section, adapting the definition of genericity based on the notion of algebraic varieties presents
a significant challenge. We, therefore, consider a definition of genericity that is often used in
the literature, but is somewhat weaker than the one that uses algebraic varieties. We formally
define this notion of genericity in Definition 4.15. Intuitively, this definition tells that a property
is generic if

(i) for every data-point, where the property holds, there exist arbitrarily small perturbations
so that the property no longer holds, and

(ii) for every data-point, where the property does not hold, there exists a suitably chosen ball
around that point over which the property continues to not hold.

The formal definition of a property over a set and its genericity is presented next.

Definition 4.14. [Won85, Section 0.16] Consider a set Θ ⊆ RN. A property Γ over Θ is a
function Γ : Θ→ {0,1}, where Γ(p) = 1 means Γ holds at p ∈ Θ and Γ(p) = 0 means Γ does
not hold at p ∈Θ.

Definition 4.15. [SP76, Section II] A property Γ over a set Θ⊆RN is said to be generic, if there
exists a set V⊆Θ such that the following statements hold:

(S1) ker(Γ)⊆ V and V 6= Θ.

(S2) For every p∗ ∈Θ\V, there exist ε > 0 such that {p ∈Θ | ‖p− p∗‖6 ε} ⊆Θ\V.

(S3) For every p̃ ∈ V and for all ε > 0, there exists p ∈Θ\V such that ‖p− p̃‖6 ε .

Using the above notion of genericity, we present the second main result of this chapter.

Hamiltonian matrix pencil is generically regular among all singular LQR problems

Theorem 4.16. Let n,m ∈ N,d := n+ m. Consider all singular LQR problems with the
parameter matrices coming from

Pn,m := {(A,B,Q) ∈ Rn×n×Rn×m×Rp×p |Q :=

Q S

ST R

> 0,

Q ∈ Rn×n,R ∈ Rm×m,det(R) = 0}. (4.42)

Let the corresponding Hamiltonian pencil pair (E,H) be as given in equation (4.2).
Then, the property det(sE−H) 6= 0 over the set Pn,m holds generically.
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It is important to note here that the property det(sE−H) 6= 0 among all LQR problems
is generically true based on the notion of algebraic varieties. However, the nontrivial part of
Theorem 4.16 is the claim that det(sE −H) 6= 0 among all singular LQR problems. As
motivated previously the reason for this is the fact that the set of singular LQR problems is a set
of measure zero in a Euclidean space. Now we prove Theorem 4.16 in the next section.

4.4.1 Hamiltonian matrix pencil is generically regular

In this section we prove Theorem 4.16 which states that among all singular LQR problems,
the set of corresponding Hamiltonian matrix pencils are generically regular, i.e., the property
det(sE −H) 6= 0 over the all singular LQR problems holds generically. In order to prove
Theorem 4.16, we first define the set

N := {(A,B,Q) ∈Pn,m |det(sE−H) = 0} . (4.43)

We also define the property Γ : Pn,m→{0,1} such that

Γ(ν) =

0, for ν ∈N

1 otherwise.
(4.44)

From the definition of Γ it is clear that ker(Γ) = N . Therefore, to prove Theorem 4.16, it
suffices to show that N satisfies the three statements on V defined in Definition 4.15. We prove
these three statements on N one-by-one.
Set N satisfies (S1): Clearly, ker(Γ) = N . Now consider

A = Q = In, S = 0nm, R = diag(0m−r,m−r, Ir), and B = col(Im,0n−m).

It is easy to verify that det(sE−H) = (s2−1)n−m×(2−s2)r 6= 0. Thus, (A,B,Q)∈Pn,m \N
and therefore N 6= Pn,m. �

Set N satisfies (S2): Let d := n+m. Now, we define the vector space

Ω` :=
{
(A,B,Q) ∈ Rn×n×Rn×m×Rd×d |Q :=

Q S

ST R

 ,Q ∈ Rn×n,R ∈ Rm×m
}
. (4.45)

We also define the following set:

Next:=
{
(A,B,Q)∈Ω`|det(sE−H)=0, where (E,H) is as defined in equation (4.2)

}
. (4.46)

Note that Ω` is isomorphic to R`, i.e., Ω`
∼=R`. Hence, listing the elements of (A,B,Q) in some

arbitrary order, we regard an element (A,B,Q) ∈ Ω` as a point p ∈ R`, where ` is a function
of n,m. (We also identify sets like Pn,m,N as subsets of R`, which is understood via the
isomorphism Ω`

∼= R`.) In order to emphasize the dependence of (E,H) on p ∈ Ω`, we write
this (E,H) pair as (E(p),H(p)) in the sequel. Now, det(sE(p)−H(p)) =

∑2n+m
i=0 ai(p)si,
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where each coefficient ai(p) is some polynomial in p with real coefficients. Therefore, viewing
Next as a subset of R` we can write

Next =
{

p ∈ R` |
∑2n+m

i=0 ai(p)si ≡ 0
}
=
{

p ∈ R` |a0(p) = a1(p) = · · ·= a2n+m(p) = 0
}
.

Consequently, Next is a variety in R`, and R` \Next is a Zariski1 open-set in R`. Therefore,
for all points p̂ ∈ R` \Next, there exists an ε > 0 such that

Bp̂,ε := {p ∈ R` | ‖p− p̂‖6 ε} ⊆ R` \Next. (4.47)

Now, given an arbitrary point p∗ ∈Pn,m \N , we can infer from the definitions of N and Next

(Equation (4.43) and equation (4.46), respectively) that p∗ ∈ R` \Next. It then follows from
equation (4.47) that there exists an ε > 0 such that Bp∗,ε ⊆ R` \Next. Consequently,

Bp∗,ε ∩Pn,m ⊆ (R` \Next)∩Pn,m = Pn,m \N ⇒{p ∈Pn,m | ‖p− p∗‖6 ε} ⊆Pn,m \N .

Since p∗ ∈Pn,m \N was taken arbitrarily, it follows that for all p∗ ∈Pn,m \N , there exists
an ε > 0 such that

p ∈Pn,m | ‖p− p∗‖6 ε} ⊆Pn,m \N .

This proves that N satisfies (S2) of Definition 4.15. �

Set N satisfies (S3): Let (At,Bt,Qt) be an arbitrary point in N , where Qt =
[

Qt St
ST
t Rt

]
, and

ε > 0 be arbitrary. From Lemma 4.1 recall that there exists an orthogonal matrix U ∈ Rm×m

such that UT RtU = diag(0, R̂), where R̂ ∈ Rr×r and det(R̂) 6= 0. We fix this U to define the
map WU : Ω`→ Ω` as (A,B,Q) 7→ (A,BU,V T QV ), where V := diag(In,U). Clearly, WU is
a linear map. It can be checked that Pn,m,N are invariant under WU . Further, since U is
invertible, WU is a bijection from Ω` to Ω`. Consequently, WU |Pn,m

is also a bijection from
Pn,m to Pn,m. Likewise, WU |N is a bijection from N to N . Let the induced norm of W −1

U be
ρ , i.e.,

∥∥W −1
U

∥∥=: ρ . In order to proceed further, we need to define the following set:

Θn,m,r := {(A,B,Q) ∈ Rn×n×Rn×m×Rp×p |Q > 0,

Q :=


Q 0 S2

0 0 0

ST
2 0 R̂

 ,Q ∈ Rn×n, R̂ ∈ Rr×r,det(R̂) 6= 0}. (4.48)

Note that Θn,m,r ( Pn,m ( Ω` where Ω` is as defined in equation (4.45). Recall (Ê, Ĥ) from
equation (4.9) to define

Z := {(A,B,Q) ∈Θn,m,r |det(sÊ− Ĥ) = 0}. (4.49)

Clearly Z = N ∩Θn,m,r. Lemma 4.17 will be of crucial importance in the sequel.

1In Zariski topology, a closed set is defined to be the set of zeros of polynomial equations.
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Genericity of the property det(sÊ− Ĥ) 6= 0 among all singular LQR problems

Lemma 4.17. Consider the sets Θn,m,r and Z as defined in equation (4.48) and equation
(4.49), respectively. Then, for every z ∈Z and for all ε > 0, there exists p ∈ Θn,m,r \Z
such that ‖p− z‖6 ε .

In order to prove Lemma 4.17 we need to a few auxiliary results which we present next.
We need to define the following sets in addition to the sets Ω` and Θn,m,r defined in equation
(4.45) and equation (4.48), respectively. Fix an r ∈ N, r< m. The set ΩN then is defined as

ΩN := {(A,B,C,D,S2) |A,C ∈ Rn×n,B ∈ Rn×m,D ∈ Rr×r,S2 ∈ Rn×r}. (4.50)

Note that ΩN
∼= RN, where N is a function of n,m,r. Hence, an element (A,B,C,D,S2) ∈ ΩN is

represented as a vector ξ ∈ RN in the sequel. Further, we define

Θ
∗
n,m,r := {(A,B,C,D,S2) ∈ΩN |det(D) 6= 0} . (4.51)

Define the map Ψ : Θ∗n,m,r→ Ω` as Ψ(A,B,C,D,S2) := (A,B,Q) where Q :=
[

Q 0 S2
0 0 0

ST
2 0 R̂

]
, Q :=

CTC+S2(DT D)−1ST
2 , and R̂ := DT D.

Range-space of Ψ is the set Θn,m,r

Lemma 4.18. Let Ψ : Θ∗n,m,r → Ω` be as defined above, and Θn,m,r be as defined in
equation (4.48). Then, img Ψ = Θn,m,r.

Proof: Note that det(D) 6= 0⇒ R̂ = DT D > 0. Since Q =CTC+S2(DT D)−1ST
2 , Schur com-

plement of Q with respect to R̂ gives

QSchur := diag(Q−S2R̂−1ST
2 ,0, R̂) = diag(CTC,0,DT D)> 0.

Clearly, QSchur > 0⇒Q > 0. Thus, img Ψ⊆Θn,m,r.

For the converse, let (A,B,Q) ∈ Θn,m,r be given, where Q =

[
Q 0 S2
0 0 0

ST
2 0 R̂

]
> 0. In order to

show Θn,m,r ⊆ img Ψ, it suffices to show there exist C ∈ Rn×n,D ∈ Rr×r, det(D) 6= 0 such
that Q := CTC+ S2(DT D)−1ST

2 , and R̂ := DT D. Such a D clearly exists by taking a Cholesky
decomposition of R̂. For the desired C, note that Q− S2R̂−1ST

2 > 0 since Q > 0 (follows by
taking the Schur complement wit respect to R̂). This admits the factorization Q− S2R̂−1ST

2 =

CTC to get the desired C. �

Next we define the map

Φ : Θn,m,r→ R[s] such that Φ(A,B,Q) := det(sÊ− Ĥ),

where (Ê, Ĥ) is as given in equation (4.5) with B =: col(B1,B2), and B2 ∈ Rn×r. Define
Φ∗ :=Φ◦Ψ. Note that Z = ker Φ, where Z is as defined in equation (4.49). The commutative
diagram of the maps defined here is as follows:



94 Chapter 4. Constrained generalized continuous ARE (CGCARE)

Θn,m,r R[s]

Θ∗n,m,r

Φ

Ψ
Φ∗

Figure 4.1: A commutative diagram involving the maps Ψ, Φ and Φ∗.

Restriction of map Ψ to Z ∗ is the set Z

Lemma 4.19. Define Z ∗ := ker Φ∗. Then, Ψ(Z ∗) = Z .

Proof: Ψ(Z ∗)⊆Z follows trivially from the definitions of Ψ,Φ, and Φ∗. The converse, i.e.,
Ψ(Z ∗)⊇Z follows from Lemma 4.18. Indeed, suppose α ∈Z . By Lemma 4.18 there exists
β ∈ Θ∗n,m,r such that Ψ(β ) = α . However, Φ∗(β ) = Φ(Ψ(β )) = Φ(α) = 0 because α ∈ Z .
Therefore, β ∈Z ∗. �

Continuity of the map Ψ

Lemma 4.20. Ψ : Θ∗n,m,r→Ω` is locally Lipschitz continuous.

Proof: It follows from the fact that Ψ is continuously differentiable. �

Z ∗ is a “thin set” in Θ∗

Lemma 4.21. For every z∗ ∈Z ∗ and for all ε > 0 there exists p∗ ∈Θ∗n,m,r \Z ∗ such that
‖p∗− z∗‖6 ε .

Proof: We first show that Z ∗ 6= Θ∗n,m,r. Take

A =C = In, D = Ir, S2 = 0n,r, B = col(Im,0n−m,m) =:
[
B1 B2

]
,

where B1 ∈Rn×(m−r), B2 ∈Rn×r. It is easy to verify that det(sÊ− Ĥ) 6= 0. Thus, Z ∗ 6= Θ∗n,m,r.
Let z∗ ∈Z ∗ and ε > 0 be arbitrary. Recall that Θ∗n,m,r ⊆ΩN

∼=RN. Let ξ be a typical point
in RN, we write det(D) as a polynomial d(ξ ). From the definition of Z ∗ it follows that there
exist polynomials a0(ξ ),a1(ξ ), . . . ,a2n+m(ξ ) such that

Z ∗ = {ξ ∈Θ
∗
n,m,r |

∑2n+m
i=0 ai(ξ )si ≡ 0}

= {ξ ∈Θ
∗
n,m,r |a0(ξ ) = a1(ξ ) = · · ·= a2n+m(ξ ) = 0}

= {ξ ∈ RN |a0(ξ ) = · · ·= a2n+m(ξ ) = 0,d(ξ ) 6= 0}. (4.52)

Define Y := {ξ ∈ RN |a0(ξ ) = · · · = a2n+m(ξ ) = 0}. From equation (4.51), Θ∗n,m,r = {ξ ∈
RN |d(ξ ) 6= 0}. Clearly, Z ∗ = Y ∩Θ∗n,m,r. Hence, z∗ ∈Z ∗⇒ z∗ ∈ Y and z∗ ∈ Θ∗n,m,r. Since Y
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is a variety in RN,

for all ε
′ > 0 there exists p ∈ RN \Y such that ‖p− z∗‖6 ε

′. (4.53)

Further, since Θ∗n,m,r, too, is a Zariski open-set in RN, there exists δ > 0 such that

{x ∈ RN|‖x− z∗‖6 δ} ⊆Θ
∗
n,m,r.

Therefore, defining ε∗ := min(δ ,ε), it follows from equation (4.53) that, there exists p∗ ∈RN\Y
such that ‖p∗− z∗‖6 ε∗. Clearly, p∗ ∈Θ∗n,m,r because ‖p∗− z∗‖6 ε∗6 δ . Also, p∗ 6∈Z ∗ since
p∗ 6∈Y and Z ∗ ⊆Y . Thus, p∗ ∈Θ∗n,m,r \Z ∗ and ‖p∗− z∗‖6 ε∗ 6 ε . Since z∗ ∈Z ∗ and ε > 0
were arbitrary, it follows that for every z∗ ∈Z ∗ and for all ε > 0 there exists p∗ ∈ Θ∗n,m,r \Z ∗

such that ‖p∗− z∗‖6 ε . �

Proof of Lemma 4.17: For a given z ∈ Z ( Θn,m,r, by Lemma 4.18, there exists z∗ ∈ Θ∗n,m,r
such that Ψ(z∗) = z. From Lemma 4.19, z∗ ∈ Z ∗. Now, since Θ∗n,m,r ⊆ RN is Zariski open,
there exists δ > 0 such that Bz∗,δ := {w ∈ RN | ‖w− z∗‖ 6 δ} ⊆ Θ∗n,m,r. From Lemma 4.20, it
follows that there exists Lδ > 0 (Lipschitz constant) such that

‖Ψ(ζ )−Ψ(η)‖6 Lδ ‖ζ −η‖ ∀ ζ ,η ∈Bz∗,δ . (4.54)

Now for a given ε > 0, define ε ′ := ε

Lδ
. Let ε̂ := min(ε ′,δ ). From Lemma 4.21, there exists

p∗ ∈Θ∗n,m,r \Z ∗ such that

‖p∗− z∗‖6 ε̂. (4.55)

Since ‖p∗− z∗‖ 6 ε̂ 6 δ , p∗ ∈Bz∗,δ . Hence, using inequality (4.54) with ζ = p∗ and η = z∗

and the fact that Ψ(z∗) = z, we have

‖Ψ(p∗)−Ψ(z∗)‖6 Lδ ‖p∗− z∗‖⇒ ‖Ψ(p∗)− z‖6 Lδ ‖p∗− z∗‖ . (4.56)

Using inequality (4.55) in inequality (4.56), we have ‖Ψ(p∗)− z‖ 6 Lδ ‖p∗− z∗‖ 6 Lδ ε̂ 6

Lδ ε ′ = Lδ
ε

Lδ
= ε . Define p := Ψ(p∗). Since p∗ ∈ Θ∗n,m,r \Z ∗, by Lemma 4.19 it follows that

p ∈ Θn,m,r \Z . Thus, for every z ∈Z and for all ε > 0, there exists p ∈ Θn,m,r \Z such that
‖p− z‖6 ε . �

Let p̃∈R` be the vector that represents (At,Bt,Qt)∈N . Note that, (At,BtU,UT QtU)∈
Θn,m,r. Hence, y := WU(p̃) ∈ Θn,m,r. Since p̃ ∈N , it follows from Lemma 4.3 and equation
(4.49) that y ∈Z . From Lemma 4.17, we know that there exists y∗ ∈Θn,m,r \Z such that

‖y∗− y‖6 ε

ρ
. (4.57)

Define p := W −1
U (y∗). Utilizing the basic inequality of the norm of the linear map W −1

U and
inequality (4.57) we get

‖p− p̃‖=
∥∥W −1

U (y∗)−W −1
U (y)

∥∥6 ρ ‖y∗− y‖6 ρ
ε

ρ
= ε.
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Moreover, since y∗ ∈ Θn,m,r \Z we must have p ∈Pn,m \N . Indeed, if p ∈N then due to
invariance of N under WU we have y∗ =WU(p) ∈N ∩Θn,m,r =Z (y∗ ∈Θn,m,r by definition).
Thus, for every p̃∈N and for all ε > 0, there exists p∈Pn,m \N such that ‖p− p̃‖6 ε . This
shows that N satisfies S3 in Definition 4.15. �.

4.4.2 CGCARE is generically unsolvable

We present the third main result of this chapter in this section.

CGCARE is generically unsolvable

Theorem 4.22. Consider all singular LQR problems of the form given in Problem (2.1).
Let the corresponding CGCARE be as given in equation (4.1). Then, the CGCARE is
generically unsolvable.

Proof: From Theorem 4.8, it is clear that for the CGCARE to have a solution, a necessary
condition is that the corresponding det(sE−H) must be zero. From Theorem 4.16, we know
that det(sE−H) 6= 0 is a generic property among all singular LQR problems. Therefore, the
corresponding CGCARE is generically unsolvable. �

From [FN14] and [FN16] it is known that for a singular infinite-horizon LQR problem to ad-
mit an impulse-free solution, a necessary and sufficient condition is that the corresponding
CGCARE (4.1) must admit a solution. However, we have shown in Theorem 4.22 that the CG-
CARE is unsolvable generically. Thus, we infer that all singular LQR problems generically do
not admit impulse-free solutions. This further means that unlike the regular LQR problem, sin-
gular infinite-horizon LQR problems generically cannot be solved using static state-feedback
optimal control law. Informally, this means that given any singular LQR problem that can be
solved using static state-feedback optimal control law, an arbitrarily small perturbation in the
parameter matrices converts it to another singular LQR problem that is unsolvable using static
state-feedback optimal control law.

The results in this chapter reveals that the theory of CGCARE is applicable only if the
Hamiltonian system is non-autonomous. On the other hand, the theory that we have devel-
oped in Chapter 3 had the assumption that det(sE −H) 6= 0, i.e., the Hamiltonian system is
autonomous. This leads to the natural question: How do we solve a singular LQR problem
that admits a non-autonomous Hamiltonian system with no CGCARE solution? Note that the
theory developed in Chapter 3 is applicable to LQR problems with the underlying system being
single-input. We have established in Lemma 3.16 that for the single-input case the Hamiltonian
system is always autonomous for non-trivial Q. Hence, there exists no single-input LQR prob-
lem, for non-trivial Q, that admits a CGCARE solution. Thus, the theory developed in Chapter
3 is applicable to all single-input LQR problems with the exception of problems that admit
Hamitlomian systems with imaginary-axis eigenvalues. However, for the multi-input case there
exist LQR problems that admit non-autonomous Hamiltonian systems and do not admit a CG-
CARE solution: see Example 4.13. Although the set of such a class of system is thin among the
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set of singular LQR problems (by Theorem 4.16) yet it is a question worth investigating. This
is a matter of future research and hence we do not dwell on such a class of system further.

4.5 Summary

In this chapter, we showed that the CGCARE corresponding to a singular LQR problem is
generically unsolvable (Theorem 4.22). We obtained this result in three steps: we first deduced
necessary and sufficient conditions for solvability of the CGCARE (Theorem 4.8). Using these
conditions we derived a necessary condition for solvability of the CGCARE (Corollary 4.9)
and then finally we showed that this necessary condition generically fails to hold in the sample
space of all infinite-horizon singular LQR problems (Theorem 4.16). It has been shown in the
literature that solvability of CGCARE is a necessary and sufficient condition for singular LQR
problems to admit an impulse-free solution that is implementable as a static state-feedback law.
Using this fact, in conjunction with Theorem 4.22 of this chapter, we can then infer that singu-
lar infinite-horizon LQR problems generically do not admit solutions by static state-feedback
optimal control law. As a matter of fact for single-input systems CGCARE is solvable if and
only if Q = 0. This makes the singular LQR problem for the single-input case trivial. Hence,
we infer that a nontrivial singular LQR problem, for a single input system, that admits a reg-
ular Hamiltonian pencil needs to be solved using PD state-feedback control law that we have
proposed in Theorem 3.12.
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Chapter 5

Storage functions of singularly passive
SISO systems

5.1 Introduction

Theory of passive systems has been a cornerstone in network theory, systems theory and con-
trol. Passivity theory has benefited immensely from the celebrated Kalman-Yakubovich-Popov
(KYP) lemma that made the theory useful for large scale systems by providing a linear matrix
inequality (LMI) based formulation of passivity [Kal63], [Yak62], [Pop64]. The KYP lemma
states that a bounded-input bounded-output (BIBO) stable system, with minimal i/s/o represen-
tation

d
dt

x = Ax+Bu, y =Cx+Du, (5.1)

where A ∈ Rn×n,B,CT ∈ Rn×p and D ∈ Rp×p, is passive if and only if there exists K = KT ∈
Rn×n, K > 0, such that K satisfies the following LMI:AT K +KA KB−CT

BT K−C −(D+DT )

6 0. (5.2)

We call this LMI the KYP LMI. Upon assuming that (D+DT ) is positive definite, the KYP LMI
becomes equivalent to the following quadratic matrix inequality, known as the algebraic Riccati
inequality (ARI):

AT K +KA+(KB−CT )(D+DT )−1(BT K−C)6 0. (5.3)

In analysis and synthesis of passive systems, it is often required to obtain the rank-minimizing
solutions of the KYP LMI, especially the maximal and minimal among the rank-minimizing
solutions – these special rank-minimizing solutions are called the extremal solutions. These
extremal solutions are obtained by solving the matrix equation corresponding to the ARI, the
algebraic Riccati equation (ARE):

AT K +KA+(KB−CT )(D+DT )−1(BT K−C) = 0. (5.4)

101
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Apart from these extremal solutions, all the other solutions of the ARE (5.4) are also known to
be the rank-minimizing solutions of the corresponding KYP LMI. Thus, the ARE/ARI based
techniques have become one of the most widely used methods to solve the KYP LMI. However,
these methods are rendered unusable when D+DT becomes singular. Hence, the condition
of D+DT being invertible is the feed-through regularity condition for the KYP LMI (5.2).
The class of systems that do not satisfy this feed-through regularity condition is what we are
concerned with in this chapter. We call such systems singularly passive systems, and the KYP
LMI corresponding to such systems the singular KYP LMI (see Definition 5.1 for a formal
definition).

As mentioned earlier, rank-minimizing solutions of the KYP LMI are used in various do-
mains of systems and control theory. In network theory, such solutions reveal the trajectories
of optimal-charging and optimal-discharging in an RLC circuit [Wil72], [WT98, Remark 5.14],
[CSMB14]. Numerous model order reduction techniques have been developed recently that
rely on the rank-minimizing solutions, in particular the extremal solutions, of the KYP LMI:
see [GA04], [TMR09] and references therein. In all of these problems, satisfaction of the feed-
through regularity condition remains a standing assumption [GA04], [TMR09]. A version of
the regularity condition appears in H2/H∞-optimal control also (see [DGKF89], [Sch89]). How-
ever, in many situations, such a condition may turn out to be too restrictive. Indeed, many RLC
networks that do not satisfy the feed-through regularity condition can be readily constructed.
An example of such is shown in Figure 5.1. In this chapter, we present a method to compute
rank-minimizing solutions of the KYP LMI that arises out of a passive system which need not
necessarily satisfy the feed-through regularity condition.

v

i

+

−

+
vc

−R C

Figure 5.1: A singularly
passive RC circuit

Relaxation of the feed-through regularity condition from
the KYP lemma has been an active area of research (see [CS92],
[WWS94], [Rei11]). Our approach in this chapter, to tackle the
problem of solving singular KYP LMI, is somewhat closer to
the one taken in [Rei11]; to the extent that, just like in [Rei11],
the central object in our analysis that leads to the solution, is the
Hamiltonian pencil (see equation (5.7) for the definition). How-
ever, unlike [Rei11], our approach does not depend on the notion
of neutral deflating subspaces. Rather our approach is similar
to the one taken in Chapter 2 for singular LQR problems. Al-
though the approach is the same as that in Chapter 2, however
the auxiliary results required to get to the rank-minimizing solutions of singular KYP LMI are
not exactly similar to that of the singular LQR problem. Further, these auxiliary results reveal
new insights into passive systems, as well. Similar to the LQR LMI for a singular LQR prob-
lem, our solution to the singular KYP LMI is obtained by providing a simple extension to the
conventional method of solving the regular KYP LMI by computing eigenspaces of the Hamil-
tonian pencil. It is known that, for singular KYP LMIs, the Hamiltonian pencil shows a deficit
in the dimension of the required eigenspaces (see Example 5.5). The above-mentioned exten-
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sion presented in this chapter, comes in the form of compensating these eigenspaces by adding
new basis vectors coming from a suitable arrangement of the controllability and observability
matrices. A remarkable outcome of this extension is that, once this compensation is done, a
rank-minimizing solution of the KYP LMI can then be found by following a method exactly
same as the conventional one. This is the main result in this chapter (Theorem 5.7). Perhaps
the most crucial observation that enables us in arriving at this result is an interesting property
satisfied by the Markov parameters of a singularly passive SISO system (Lemma 5.14). The
relative simplicity of construction of the rank-minimizing solutions of a singular KYP LMI, as
provided by Theorem 5.7, results in an easy-to-implement Algorithm 5.16. As a special case
of this algorithm, we can retrieve the already known algorithm to compute rank-minimizing
solutions of KYP LMI for passive systems that admit the ARE (Section 5.4). A well-known
computational approach towards solving the KYP LMI involves using semi-definite program-
ming techniques [VBW+05]. However, such methods require O(n6) floating point operations
(flops) [VBW+05], while exploitation of certain structures in the problem may lead to an im-
provement up to O(n4.5) [VBW+05]. The method we propose in this chapter has a flop count of
O(n3) (Table 5.3). Note that the main result of this chapter is currently formulated and proved
for SISO systems.

5.2 Preliminaries

In this section we review the preliminary concepts required to develop the theory behind the
main results of this chapter.

5.2.1 Controller canonical form

Though the controller canonical form is standard, we include it for completeness. Consider a
system with a strictly proper transfer function G(s) = n(s)

d(s) where n(s) = bn−1sn−1+bn−2sn−2+

· · ·+ b0 and d(s) = sn+ an−1sn−1 + · · ·+ a1s+ a0. Define the controller canonical form state-
space representation of the system d

dt x = Ax+Bu and y =Cx, where A ∈ Rn×n and B,CT ∈ Rn

with A,B,C as

A :=


0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

−a0 −a1 · · · −an−2 −an−1

 , B :=


0
...

0

1

 , C :=


b0
...

bn−2

bn−1



T

.

5.2.2 Passivity

The LMI (5.2) originates from a more fundamental law that passive systems satisfy known as
the dissipation inequality: a system with minimal i/s/o representation (5.1) is passive if and only
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if there exists a K = KT ∈Rn×n with K > 0 such that for every col(x,u,y) ∈ C∞(R,Rn+2p) that
satisfies equation (5.1), we must have (see [Wil72])

d
dt

(
xT Kx

)
6 2uT y for all t ∈ R. (5.5)

It can be shown that K satisfies the dissipation inequality (5.5) if and only if K is a solution of
the KYP LMI (5.2). The quadratic form

(
xT Kx

)
that appears on the left-hand side of inequality

(5.5) is known as a storage function of the system. Thus, every solution to the KYP LMI (5.2)
is uniquely associated with a storage function of the system. In the sequel, once a state-space
is specified, we often ignore the distinction between the matrix K and the quadratic form it
induces, and, hence, use the term ‘storage function’ and ‘solution matrix K of the corresponding
KYP LMI’ interchangeably.

It is known that a system with transfer function matrix G(s) is passive if and only if it is
positive real: i.e., G(s) is BIBO stable, and G(iω)+G(−iω)T > 0 for all ω ∈R [AV06, Chapter
5]. In this chapter, we deal with passive systems for which det

(
G(iω)+G(−iω)T)→ 0 as

ω → ∞. Note that, this is true if and only if the rational function det
(
G(s)+G(−s)T) is

strictly proper. In terms of the i/s/o representation, this is equivalent to D+DT being singular.
Clearly, in this situation, obtaining storage functions by solving the KYP LMI via ARE/ARI
is ruled out. Such systems are of central importance in this chapter. Due to the singularity of
the corresponding feed-through term D+DT , we call these systems singularly passive systems
(see Definition 5.1 below for an exact definition). Similar to Chapter 2, in this chapter, we
present an easy-to-implement algorithm that provides explicit solution formulae to KYP LMI
of singularly passive SISO systems. Although the underlying principles that make the algorithm
work are in stark difference from the conventional ARE/ARI-based methods, there is, however,
a close parallel between the two. In order to put our analysis in perspective with respect to the
conventional ARE/ARI approach, we formally define below both singularly passive systems and
those passive systems, as well, for which ARE/ARI approach works: in contrast to singularly
passive systems, we call these systems regularly passive. In the sequel, we denote the numerator
of a rational function p(s) by the symbol num(p(s)). We use the symbols roots(q(s)) and
rootnum(p(s)) to denote the set of the roots of q(s) and num(p(s)), respectively, where q(s) ∈
R[s] and p(s) ∈ R(s). Here a root is included in the set roots(q(s)) and rootnum(p(s)) as
many times as it appears as a root of q(s) and num(p(s)), respectively. Further, we denote the
degree of the polynomials q(s) and num(p(s)) with deg(q(s)) and degnum(p(s)), respectively.

Definition 5.1. A SISO system with transfer function G(s) ∈R(s) and a minimal i/s/o represen-
tation given by equation (5.1) is said to be regularly passive if it satisfies each of the following
four conditions:

1. The system is BIBO stable, i.e., all the poles of G(s) lie in C−.

2. There exists a solution K = KT ∈ Rn×n to the corresponding KYP LMI (5.2).

3. rootnum(G(s)+G(−s))∩ jR= /0.
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4. degnum(G(s)+G(−s)) = 2n.

In contrast, a SISO system with transfer function G(s)∈R(s) and a minimal i/s/o representation
given by equation (5.1) is said to be singularly passive if the system satisfies properties (1), (2)
and (3) above, but, instead of property (4), it satisfies 06 degnum(G(s)+G(−s))< 2n.

For a SISO system with transfer function G(s), the rational function G(s) + G(−s) is
known as the Popov function. Further, the roots of the numerator of the Popov function are also
known as the spectral zeros of the system Σ: see [TMR09]. The following property of the poles
and spectral zeros of a passive SISO system is crucially used in this chapter.

A passive and BIBO stable SISO system does not share spectral zeros and poles

Lemma 5.2. Consider a SISO system Σ with transfer function G(s) := n(s)
d(s) , where

n(s),d(s) ∈ R[s] are coprime. Define q(s) := n(s)d(−s) + d(s)n(−s). Let λ ∈
roots(d(s)). Then, λ ∈ roots(q(s))∩roots(d(s)) if and only if λ ∈ roots(d(−s)).
In particular, if Σ is BIBO stable, then the following statements are true

(1) roots(q(s))∩roots(d(s)) = /0.

(2) num(G(s)+G(−s)) = q(s).

Proof: If: Given d(λ ) = d(−λ ) = 0. Therefore, q(λ ) = n(λ )d(−λ )+n(−λ )d(λ ) = 0. Thus,
λ ∈ roots(q(s))∩roots(d(s)).
Only if: Given d(λ ) = q(λ ) = 0. Thus, q(λ ) = n(λ )d(−λ )+n(−λ )d(λ ) = n(λ )d(−λ ) = 0.
Since n(s) and d(s) are coprime, n(λ ) 6= 0. Therefore, d(−λ ) = 0, i.e., λ ∈ roots(d(−s)).
(1): Clearly, if G(s) is BIBO stable then λ ∈ roots(d(s)) implies that λ 6∈ roots(d(−s)).
Therefore, λ 6∈ roots(q(s))∩ roots(d(s)). Since this is true for all roots of d(s), we must
have roots(q(s))∩roots(d(s)) = /0.
(2): From Statement (1) it is clear that q(s) and d(s) are coprime. We claim that q(s) and
d(−s) are coprime, as well. To the contrary, assume that q(s) and d(−s) are not coprime. Let
λ1 ∈ roots(q(s))∩ roots(d(−s)). Then, λ1 ∈ roots(d(−s))⇒ −λ1 ∈ roots(d(s)). Fur-
ther, q(λ1) = n(λ1)d(−λ1)+n(−λ1)d(λ1) = 0⇒ n(−λ1)d(λ1) = 0⇒ d(λ1) = 0. Therefore,
λ1 ∈ roots(d(s)). However, since Σ is BIBO stable,±λ1 ∈ roots(d(s)) is not possible. There-
fore, we must have roots(q(s))∩ roots(d(−s)) = /0. Thus, q(s) and d(−s) are coprime, as
well. Therefore, q(s) and d(s)d(−s) are coprime. This implies that num(G(s)+G(−s)) =
num

(
q(s)

d(s)d(−s)

)
= q(s). �

Of crucial importance in the sequel is the degree of the numerator of the Popov function,
as well. Note that the numerator of G(s)+G(−s) is an even-degree polynomial. Therefore,
degnum(G(s)+G(−s)) is a non-negative even integer. We denote this number by 2ns, i.e.,
ns := (degnum(G(s)+G(−s)))/2, where 0 6 ns < n. In this case, the system Σ is said to be
a singularly passive SISO system of order ns. It is important to note that we do not include,
in the class of singularly passive SISO systems, those systems for which G(s)+G(−s) = 0.
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Such systems, called lossless, do not admit an ARE approach as well. The theory presented
in this chapter, do not directly apply to these systems. See [AV06, Section 6.5] and Chapter
7 for alternative methods for constructing storage functions of lossless systems. However, the
method of computation of storage functions, presented in this chapter, although is different in
principle from the one presented in [AV06, Section 6.5] for lossless systems, structurally the
two methods are the same (see Section 7.3 of Chapter 7).

5.2.3 Hamiltonian matrix and Hamiltonian pencil

One of the most widely used methods to compute solutions of the KYP LMI of regularly pas-
sive systems is via finding solutions of the corresponding algebraic Riccati equation (ARE).
This, in turn, is done using suitably chosen bases of invariant subspaces of the corresponding
Hamiltonian matrix of the form:

H :=

A−B(D+DT )−1C B(D+DT )−1BT

−CT (D+DT )−1C −
(
A−B(D+DT )−1C

)T

 . (5.6)

Note that existence of the Hamiltonian matrix crucially depends on the nonsingularity of D+

DT . This renders the method of ARE/Hamiltonian matrix for singularly passive systems unus-
able. This problem can be circumvented if, instead of considering the Hamiltonian matrix, one
considers the corresponding Hamiltonian pencil.

Even when D+DT is invertible, the presence of the inverse in the Hamiltonian matrix
causes numerical issues with floating point arithmetic. It has been shown in [vD81] that this ex-
plicit inversion of D+DT can be avoided by using a special matrix pencil having the following
form:

s

In 0 0
0 In 0
0 0 0


︸ ︷︷ ︸

E

−

A 0 B

0 −AT CT

C −BT (D+DT )


︸ ︷︷ ︸

H

. (5.7)

Analogous to Chapter 2, we call the matrix pair (E,H), the Hamiltonian matrix pair. Clearly,
owing to the absence of the explicit inverse of D+DT in the expression for the Hamiltonian
matrix pair, this pencil exists even for singularly passive systems. In what follows, we describe
how this pencil can be exploited to obtain explicit solution formulae for storage functions of
singularly passive SISO systems. It is important to note here that, the problem of finding so-
lutions to the KYP LMI, when the corresponding ARE does not exist, using the Hamiltonian
pencil has also been worked out in [Rei11]. It has been shown how solutions to the KYP LMI
can be obtained by looking at maximal neutral deflating subspaces of the Hamiltonian pencil.
The solution formulae that we present in this chapter, however, do not use the notion of deflat-
ing subspaces. Our solution follows from a crucial observation regarding Markov parameters
of the system (Lemma 5.14) together with a few basic results regarding the structure of the
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eigenspaces of the Hamiltonian matrix pair (5.7). Similar to singular LQR problems, (E,H)

can be associated with a system of the form
In 0 0

0 In 0

0 0 0

 d
dt


x

z

u

=


A 0 B

0 −AT CT

C −BT (D+DT )




x

z

u

 . (5.8)

We call this the Hamiltonian system and use the symbol ΣHam to represent it.
As mentioned above, eigenvalues and eigenvectors of the matrix pair (E,H) plays a crucial

role in the sequel. Hence, we establish the relation between the spectral zeros of a passive SISO
system and the eigenvalues of the corresponding Hamiltonian matrix pair (E,H) in the next
lemma.

Eigenvalues of the Hamiltonian matrix pair are the spectral zeros of the system

Lemma 5.3. Consider a BIBO stable, SISO system Σ with transfer matrix G(s) and a
minimal i/s/o representation as given in equation (5.1). Let (sE−H) with E and H, as de-
fined in equation (5.7) above, be the corresponding Hamiltonian pencil. Then, det(sE−
H) =−num(G(s)+G(−s)). In particular, σ(E,H) = rootnum(G(s)+G(−s)).

Proof: Let G(s) =: n(s)/d(s), where n(s),d(s) ∈ R[s] are coprime. The eigenvalues of (E,H)

are given by the roots of the characteristic polynomial det(sE−H). Using the procedure known
as Schur complement, we get the following identity of rational functions:

det(sE−H) =−det(sI−A)det
(
sI +AT)

det

(D+DT )+
[
C −BT

](sI−A)−1 0

0 (sI +AT )−1

 B

CT


=−det(sI−A)det

(
sI +AT)[(D+C(sI−A)−1B

)
+
(
DT −BT (sI +AT )−1CT)]

=−d(s)d(−s)
(

n(s)
d(s)

+
n(−s)
d(−s)

)
=−(n(s)d(−s)+n(−s)d(s))

Since Σ is BIBO stable, from Lemma 5.2 it follows that num(G(s)+G(−s)) = n(s)d(−s)+
n(−s)d(s). Therefore, det(sE−H) =−num(G(s)+G(−s)). Hence, we infer that σ(E,H) =

rootnum(G(s)+G(−s)). �

Because of Lemma 5.3, henceforth, we refer to the eigenvalues of (E,H), too, as the
spectral zeros of the system.

A comparative summary among the various subclasses of passive systems defined in this
chapter is presented in the form of a table in Table 5.1. Note that, in the lossless case, i.e., when
det

(
G(s)+G(−s)T) = 0, the degree of the numerator of det

(
G(s)+G(−s)T) is taken to be

−∞ as a matter of convention.
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Passive systems
Properties

Lossless Singularly passive Regularly passive

Degree of det(sE−H) −∞ {0,2,4, · · · ,2(n−1)} 2n

KYP LMI exists exists exists

Feed-through term D+DT singular singular nonsingular

ARE and Hamiltonian matrix do not exist do not exist exist

Set of spectral zeros
entire

C-plane

cardinality is

degnum
(
G(s)+G(−s)T)=: 2ns < 2n

cardinality is

degnum
(
G(s)+G(−s)T)= 2n

Table 5.1: Properties of passive systems

5.2.4 Solution to the KYP LMI: regularly passive systems

Before getting to the main results of this chapter, which provide methods for solving the KYP
LMI for singularly passive SISO systems, it would be worthwhile looking at the regularly pas-
sive case first. Written next is a brief review of the method to compute rank-minimizing so-
lutions of the KYP LMI corresponding to a regularly passive system using the eigenspaces
of the Hamiltonian pencil. Similar to Chapter 2, this will help us in highlighting the simi-
larities/dissimilarities between the existing method for regularly passive systems and the one
presented in this chapter (the main result Theorem 5.7) for their singular counter-part.

Proposition 5.4 below summarizes the well-known method of computing rank-minimizing
solutions of the KYP LMI for regularly passive systems. This result, in various different forms,
can be found in several earlier works, for example, [Wil71], [Cop74], [Wim84], [Kuč91]. We
have collated these results and paraphrased them in Proposition 5.4 below. Before we present
the proposition, it is important to note the following property of the Hamiltonian pencil corre-
sponding to a regularly passive SISO system. Let Σ be a regularly passive SISO system with
transfer function G(s) and a minimal i/s/o representation given by (5.1). From Lemma 5.3 and
Definition 5.1 it follows that, for the corresponding Hamiltonian matrix pair (E,H), we must
have det(sE−H) to be an even-degree polynomial with no roots on the imaginary axis. Thus,
det(sE−H) for a regularly passive system must admit a Lambda-set (see Definition 2.18 for
a definition of Lambda-sets). This fact is pivotal for Proposition 5.4 below.

Proposition 5.4. Consider a regularly passive system Σ with a minimal i/s/o representation as
given in equation (5.1) and corresponding Hamiltonian matrix pair (E,H) given by equation
(5.7). Assume Λ to be a Lambda-set of det(sE−H) with cardinality n. Let V1Λ,V2Λ ∈ Rn×n

and V3Λ ∈ Rp×n be such that the columns of VeΛ := col(V1Λ,V2Λ,V3Λ) form a basis of the n-
dimensional eigenspace of (E,H) corresponding to the eigenvalues of (E,H) in Λ. Then, the
following statements hold.

(1) V1Λ is invertible.

(2) K :=V2ΛV−1
1Λ

is symmetric.

(3) K is a solution of the ARE: AT K +KA+(KB−CT )(D+DT )−1(BT K−C) = 0.
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(4) K is a rank-minimizing solution of the KYP LMI (5.2).

(5) K is positive semi-definite, i.e., K > 0.

(6) xT Kx is a storage function of the system Σ, i.e., d
dt

(
xT Kx

)
6 2uT y for all col(x,u,y) ∈

C∞
(
R,Rn+1+1) that satisfy equation (5.1).

It is crucial to note here that although there seems to be no requirement for satisfiability of the
feed-through regularity condition in this method, for V1Λ to be a square matrix, nonsingularity
of D+DT can be shown to be a necessary condition. Thus, this method cannot be used to
compute the storage functions of systems that are not regularly passive. The significance of this
proposition is the striking similarity between this and the singularly passive case in Theorem
5.7. In the next section, we first show with an example the reason for the failure of Proposition
5.4 when applied to singularly passive systems. Then we state the first main result of this
chapter (Theorem 5.7) that presents a method to compute storage functions of a singularly
passive system, in particular the rank-minimizing solutions of the corresponding KYP LMI.

5.3 Rank-minimizing solutions of the KYP LMI: SISO case

In this section we present the first main result of this chapter, Theorem 5.7. Since we are dealing
with only singularly passive SISO systems, a minimal i/s/o representation of the system takes
the following simpler form:

d
dt

x = Ax+bu, y = cx, where A ∈ Rn×n,b,cT ∈ Rn. (5.9)

Let Σ be a singularly passive SISO system of order ns with a minimal i/s/o representation of Σ

as given in equation (5.9). Therefore, the KYP LMI (5.2) for Σ takes the following form:AT K +KA Kb− cT

bT K− c 0

6 0. (5.10)

This is the singular KYP LMI corresponding to the singularly passive SISO system Σ. Similarly,
the Hamiltonian pencil for the singularly passive SISO system Σ takes the form

s

In 0 0
0 In 0
0 0 0


︸ ︷︷ ︸

E

−

A 0 b

0 −AT cT

c −bT 0


︸ ︷︷ ︸

H

= s

I2n 0

0 0

−
Â b̂

ĉ 0

 , (5.11)

where Â :=

A 0

0 −AT

 ∈ R2n×2n, b̂ :=

 b

cT

 ∈ R2n×1 and ĉ :=
[
c −bT

]
∈ R1×2n. Recall

from Lemma 5.3 that det(sE−H) = −num(G(s)+G(−s)). Therefore, Σ being singularly
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passive of order ns implies that degdet(sE−H) = 2ns. Hence, the cardinality of σ(E,H) is
2ns (counted with multiplicity). For the rest of the chapter, we define nf := n−ns.

Next, using an example of a singularly passive SISO system, we motivate the reason of
non-applicability of Proposition 5.4 in computation of the rank-minimizing solutions of the
singular KYP LMI (5.10). Failure of Proposition 5.4 to compute rank-minimizing solutions of
the singular KYP LMI in the next example will also lead to certain crucial questions whose
answers are provided by the main result (Theorem 5.7) of this chapter.

Example 5.5. Consider the transfer function G(s) =
3s2 +12s+11

s3 +6s2 +11s+6
of system Σ. A minimal

i/s/o representation of Σ is as follows.

d
dt

x =


0 1 0

0 0 1

−6 −11 −6

x+


0

0

1

u, y =
[
11 12 3

]
x.

The system Σ is a singularly passive system of order 2. The spectral zeros of Σ, i.e., zeros of the
determinant of the corresponding Hamiltonian pencil (sE−H) are{

−
√

4+
√

5,−
√

4−
√

5,
√

4+
√

5,
√

4−
√

5
}
.

Let us consider any one of the four possible Lambda-sets of det(sE−H). Let a Lambda-set Λ

be given by Λ =
{
−
√

4+
√

5,
√

4−
√

5
}
. The eigenspace of (E,H) corresponding to Λ is given by

the column-span of

VeΛ =

0.34 −0.85 2.12 −0.35 −0.36 −0.09 0.13

0.01 0.01 0.01 2.27 1.35 0.17 0.18

T

,

where the columns are the eigenvectors of the eigenvalues of (E,H) in Λ. Suitably partitioning
VeΛ, as in Proposition 5.4, gives

V1Λ =

0.34 −0.85 2.12

0.01 0.01 0.01

T

V2Λ =

−0.35 −0.36 −0.09

2.27 1.35 0.17

T

Clearly, V1Λ is a non-square matrix, and hence, a solution of the KYP LMI of the form K =

V2ΛV−1
1Λ

does not exist. This shows that Proposition 5.4 cannot be directly used to compute the
storage functions of singularly passive systems.

From Example 5.5, it is clear that, similar to the singular LQR problems, the primary
reason for the failure of Proposition 5.4 in case of singularly passive SISO systems is the fact
that the degree of det(sE−H) is strictly less than 2n. This fall in the degree causes a deficit in
the cardinality of possible Lambda-sets of det(sE−H). Indeed, a Lambda set of det(sE−H)

can now have cardinality only ns, which is strictly less than n. Consequently, the eigenspace
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of (E,H) corresponding to such a Lambda-set would also show a deficit in its dimension from
being n in the regular case. This deficit in the dimension of the eigenspace is required to
be compensated by n− ns suitable vectors. Of course, this compensation cannot be done by
arbitrary vectors. Our first main result, Theorem 5.7, shows exactly how this compensation is
to be done. However, before we address the issue of choosing suitable vectors to append to VeΛ,
another fundamental question needs to be answered first: do Lambda-sets of det(sE−H) exist
for the case of singularly passive SISO systems? The next lemma answers this question.

Singularly passive SISO systems admit Lambda-sets

Lemma 5.6. Consider a singularly passive SISO system Σ of order ns with transfer
function G(s) and a minimal i/s/o representation as given by equation (5.9). Let the
corresponding Hamiltonian pencil be as defined in equation (5.11). Assume det(sE −
H) /∈ R. Then, there exists a non-empty Lambda-set of det(sE−H) with cardinality ns.

Proof: Let G(s) = n(s)
d(s) . From Lemma 5.2 we have, num(G(s)+G(−s)) = n(s)d(−s) +

d(s)n(−s) =: q(s). Since q(s) /∈ R, there exists λ ∈ C such that q(λ ) = 0. Based on the
following three arguments, we infer that roots(q(s)) are mirrored about jR.

1. Since q(s) = q(−s), λ ∈ roots(q(s))⇒−λ ∈ roots(q(s)).

2. Since q(s) ∈ R[s], λ ∈ roots(q(s))⇒ λ̄ ∈ roots(q(s)).

3. Since Σ is singularly passive, from Definition 5.1 it follows that roots(q(s))∩ jR= /0.

From Lemma 5.2 and Lemma 5.3, we have σ(E,H)= rootnum(G(s)+G(−s))= roots(q(s)),
therefore the elements of σ(E,H) are mirrored about jR. Therefore, if degdet(sE−H) = 2ns
(ns < n), then σ(E,H) can be decomposed into two disjoint subsets Λ1,Λ2 ( σ(E,H) such that
Λ1∪Λ2 = σ(E,H) and Λ1 (C+, Λ2 (C−. Note that

1. Since Λ1 (C+ and q(s) ∈ R[s], Λ1 = Λ̄1.

2. From Λ1 (C+ and Λ2 (C−, it follows that Λ2 =−Λ1. Therefore, Λ1∩ (−Λ1) = /0.

3. The cardinality of Λ1 and Λ2 are ns each. Therefore, Λ1∪(−Λ1) = Λ1∪Λ2 = σ(E,H) =

roots(q(s)).

Using the above three arguments and Definition 2.18, we infer that Λ1 is a Lambda-set of
det(sE−H) with cardinality ns. This completes the proof of Lemma 5.6. �

Now that we have proved the existence of Lambda-sets in singularly passive SISO systems, the
crucial questions left to be answered are:

1. For singularly passive SISO systems, are there (n− ns) independent vectors that can be
appended to VeΛ (the matrix whose columns span the eigenspace of (E,H) corresponding to a
Lambda-set of det(sE−H)) so as to replicate the method described in Proposition 5.4? If such
vectors exist, then how can we find them?
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2. In particular, for singularly passive SISO systems of order 0, i.e., det(sE−H) ∈ R, there
exists no Lambda-set since ns = 0. Is it possible to find such vectors for these systems also?

The answer to all these questions are provided by the next theorem. This is the first main result
of this chapter.

A method to compute the rank-minimizing solutions of a KYP LMI

Theorem 5.7. Consider a singularly passive SISO system Σ of order ns with a minimal
i/s/o representation as in equation (5.9). Let the corresponding Hamiltonian pencil be as
defined in equation (5.11). Define degdet(sE−H) =: 2ns. Assume Λ to be a Lambda-
set of det(sE−H) with cardinality ns. Define nf := n− ns. Let V1Λ,V2Λ ∈ Rn×ns and
V3Λ ∈ R1×ns be such that the columns of col(V1Λ,V2Λ,V3Λ) =: VeΛ form a basis of the
ns-dimensional eigenspace of (E,H) corresponding to Λ, i.e.,

A 0 b

0 −AT cT

c −bT 0




V1Λ

V2Λ

V3Λ

=


In 0 0

0 In 0

0 0 0




V1Λ

V2Λ

V3Λ

ΓΛ, where ΓΛ ∈ Rns×ns and σ(ΓΛ) = Λ. (5.12)

Define VΛ :=

V1Λ

V2Λ

 ∈ R2n×ns and W :=
[
b̂ Âb̂ . . . Ânf−1b̂

]
∈ R2n×nf . Partition[

VΛ W
]
∈ R2n×n as

[
VΛ W

]
=:

X1Λ

X2Λ

 where X1Λ,X2Λ ∈ Rn×n. (5.13)

Then, the following statements hold.

(1) X1Λ is invertible.

(2) K := X2ΛX−1
1Λ

is symmetric.

(3) K is a solution to LMI (5.10), i.e., Kb− cT = 0 and AT K +KA6 0.

(4) K is a rank-minimizing solution of LMI (5.10).

(5) K is positive semi-definite, i.e., K > 0.

(6) xT Kx is a storage function of the system Σ, i.e., d
dt

(
xT Kx

)
6 2uT y for all

col(x,u,y) ∈ C∞(R,Rn+1+1) that satisfy the i/s/o representation of Σ.

A striking fact about the above result is the similarity between Theorem 5.7 and the regularly
passive case (see Proposition 5.4). However, the procedure and concepts involved in obtaining
K is very different. In Theorem 5.7, the columns of the matrix W supply the additional nf
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number of independent vectors that completes the matrix V1Λ to a square nonsingular matrix
X1Λ. Recall that the existence of W has been alluded to in Example 5.5 and the discussion
thereafter.

Note that Theorem 5.7 is similar to Theorem 2.30 in Chapter 2. However the proof of
Theorem 2.30, especially Statement (1), requires auxiliary results that are not similar to the
ones required to prove Theorem 2.30. Therefore, in the next section we present all the auxiliary
results required to prove Theorem 5.7.

5.3.1 Auxiliary results to prove Theorem 5.7

For the ease of referencing, we summarize the results required for the proof of Theorem 5.7 in
the form of a table in Table 5.2.

Recall the definitions of the following matrices, namely, (A,b,c),(Â, b̂, ĉ),VeΛ,(V1Λ,V2Λ)

from Theorem 5.7. The following notational convention is required for the auxiliary results. Let
T ∈Rn×n, nonsingular, be such that, under the similarity transformation induced by T , the sys-
tem matrix A transforms to At := T−1AT . It is known that under this transformation, matrices b
and c are transformed to bt := T−1b and ct := cT , respectively. We assume that (At,bt,ct) is
in the controller canonical form (see Section 5.2.1). Let (Et,Ht) be the Hamiltonian matrix pair
formed using the matrices (At,bt,ct). Let X1Λ and X1Λt

be constructed as defined in Theorem
5.7 using Hamiltonian matrix pair (E,H) and (Et,Ht), respectively.

Lemma Result Remarks/Conclusion

Lemma 5.8 σ(E,H)∩σ(A) = /0
Singularly passive SISO systems do not share

spectral zeros and poles.

Lemma 5.9 X1Λ is invertible⇔ X1Λt
is invertible

Nonsingularity of X1Λ is invariant

under change of basis.

Lemma 5.10

Existence of VeΛ = col(V1Λ,V2Λ,V3Λ) with

V1Λ,V2Λ ∈ Cn×ns and V3Λ ∈ C1×ns that satisfies

equation (5.12) with ΓΛ ∈ Cns×ns in Jordan canonical form.

The structure of V1Λ is crucially used in the proof of

Statement (1) of Theorem 5.7. This structure has been

elaborated in equation (5.18); see also equation (5.28).

Lemma 5.12 V T
1Λ

V2Λ =V T
2Λ

V1Λ

Relation between the left- and right-eigenvectors

of (E,H) corresponding to σ(Λ) and σ(−Λ).

Lemma 5.13 ĉ
(

sI2n− Â
)−1

b̂ = G(s)+G(−s)
Popov function is the transfer function

of a Hamiltonian system.

Lemma 5.14
First 2(nf−1) moments of Popov function are zero, i.e.,

ĉÂkb̂ = 0 for k ∈ {0,1, . . . ,2(nf−1)}.

A property of the Markov parameters

of the Hamiltonian system.

Lemma 5.15
[
−V T

2Λ
V T

1Λ

]
Âkb̂ = 0 for k ∈ {0,1, . . . ,2(nf−1)}

An identity relating the eigenvectors of (E,H)

and the system matrices of ΣHam.

Table 5.2: Table with a summary of lemmas used to prove Theorem 5.7

Next we state each of the lemmas in Table 5.2 and prove them one-by-one. The first lemma
reveals an interesting fact about all BIBO stable SISO systems. It establishes that a BIBO stable
SISO system never admits common spectral zeros and poles.
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A BIBO stable SISO system does not share spectral zeros and poles

Lemma 5.8. Consider a BIBO stable SISO system Σ with a minimal i/s/o representation
as in equation (5.1). Let (E,H) be the corresponding Hamiltonian pencil as defined in
equation (5.7). Then σ(E,H)∩σ(A) = /0.

Proof: Define G(s) := n(s)
d(s) , where n(s),d(s) ∈ R[s] are coprime. Since Σ is BIBO stable,

from Lemma 5.2 we have num(G(s)+G(−s)) = n(s)d(−s)+n(−s)d(s) =: q(s). Recall from
Lemma 5.3 that for a BIBO stable system, σ(E,H) = rootnum(G(s)+G(−s)) = roots(q(s)).
Since Σ is BIBO stable, from Lemma 5.2 we have roots(q(s))∩ roots(d(s)) = /0. Thus,
σ(E,H)∩σ(A) = /0. �

Since singularly passive SISO systems are BIBO stable (Statement (1) of Definition 5.1), from
Lemma 5.8 it is evident that such systems have no common poles and spectral zeros.

The next lemma establishes the relation between the eigenvalues of the Hamiltonian matrix
pair (E,H) constructed using (A,b,c) as given in equation (5.6), and the transformed Hamilto-
nian matrix pair (Et,Ht) constructed using (At,bt,ct).

Nonsingularity of X1Λ is invariant under change of basis

Lemma 5.9. Consider a singularly passive SISO system Σ with a minimal i/s/o repre-
sentation as in equation (5.9). Let the corresponding Hamiltonian matrix pair be (E,H)

as constructed in equation (5.11). Let a controller canonical form i/s/o representation of
Σ be d

dt x = Atx+ btu and y = ctx. Let the Hamiltonian matrix pair constructed using
(At,bt,ct) be (Et,Ht). Then,

σ(E,H) = σ(Et,Ht).

Further, let X1Λ,X2Λ ∈Rn×n be constructed as defined in equation (5.13) of Theorem 5.7
using system matrices (A,b,c) and Hamiltonian matrix pair (E,H) corresponding to a
Lambda-set Λ. Similarly, let X1Λt,X2Λt ∈ Rn×n be constructed using equation (5.13),
system matrices (At,bt,ct) and the Hamiltonian matrix pair (Et,Ht) corresponding to
a Lambda-set Λ. Then,

X1Λ is invertible if and only if X1Λt is invertible.

Proof: Let T ∈Rn×n be a nonsingular matrix such that T−1AT = At,T−1b = bt, and cT = ct.
Define Ât := diag(At,−AT

t ), b̂t = col(bt,cT
t ), and ĉt :=

[
ct −bt

]
. Further, define T̂ :=
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diag(T,T−T ) and T̃ := diag(T̂ , Ip), where T−T := (T−1)T . Then, we have the following

T̃−1HT̃ =


T

T−T

Ip


−1

A 0 b

0 −AT cT

c −bT 0




T

T−T

Ip

=


At 0 bt

0 −AT
t cT

t

ct −bT
t 0

= Ht,

T̃−1ET̃ =


T

T−T

Ip


−1

In 0 0

0 In 0

0 0 0




T

T−T

Ip

=


In 0 0

0 In 0

0 0 0

= Et

Therefore, the Hamiltonian matrix pair (E,H) and (Et,Ht) are equivalent1. By the property of
equivalent matrix pencils, σ(E,H) = σ(Et,Ht).

Define V1Λ,V2Λ,V3Λ as in Theorem 5.7 corresponding to a Lambda-set Λ of det(sE −
H). Similarly, Define V1Λt,V2Λt,V3Λt as in Theorem 5.7 corresponding to a Lambda-set Λ of
det(sEt−Ht). Then, from equation (5.13) we have

A 0 b

0 −AT cT

c −bT 0




V1Λ

V2Λ

V3Λ

=


V1Λ

V2Λ

0

Γ and


At 0 bt

0 −AT
t cT

t

ct −bT
t 0




V1Λt

V2Λt

V3Λt

=


V1Λt

V2Λt

0

Γ, where σ(Γ)=Λ.

Replacing (A,b,c) by (TAtT−1,T bt,ctT−1) in the above equation, we have
TAtT−1 0 T bt

0 −(TAtT−1)T (ctT−1)T

ctT−1 −(T bt)T 0




V1Λ

V2Λ

V3Λ

=


V1Λ

V2Λ

0

Γ, where σ(Γ) = Λ


At 0 bt

0 −AT
t cT

t

ct −bT
t 0




T

T−T

Ip


−1

V1Λ

V2Λ

V3Λ

=


T

T−T

Ip


−1

V1Λ

V2Λ

0

Γ. (5.14)

Therefore, from equation (5.14) it is clear that T̂−1col(V1Λ,V2Λ) = col(V1Λt,V2Λt). Further, it
is easy to verify that

W =
[
b̂ Âb̂ · · · Ânf−1b̂

]
= T̂

[
b̂t Âtb̂t · · · Ânf−1

t b̂t
]
.

Defining VΛ := col(V1Λ,V2Λ) and VΛt
:= col(V1Λt,V2Λt), we therefore haveX1Λ

X2Λ

=
[
VΛ b̂ Âb̂ · · · Ânf−1b̂

]
= T̂

[
VΛt

b̂t Âtb̂t · · · Ânf−1
t b̂t

]
=

T

T−T

X1Λt

X2Λt

 .
1Two matrix pairs (A1,A2) and (B1,B2) are equivalent if there exist nonsingular matrices P and Q such that

P(sA1−A2)Q = (sB1−B2). Note that det(sB1−B2) = det(P)det(Q)det(sA1−A2). Therefore, characteristic
polynomials of (A1,A2) and (B1,B2) are the same (up to to scaling), i.e., σ(A1,A2) = σ(B1,B2).
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Thus, we have X1Λ = T X1Λt. Since T is nonsingular, X1Λ is nonsingular if and only if X1Λt is
nonsingular. �

Note that in the proof of Lemma 5.9 we have not used the fact that At, bt, and ct are in
controller canonical form. This indicates that the lemma holds true for any change in basis of
the state-space Rn and hence, the title of the lemma: X1Λ is invariant under change of basis on
the state-space.

The next lemma shows the existence and the structure of the eigenvectors corresponding
to the spectral zeros of a singularly passive SISO system. The structure of the eigenvectors is
crucially used in the proof of Statement (1) of Theorem 5.7.

Existence of eigenvectors corresponding to an eigenvalue of σ(E,H)

Lemma 5.10. Consider a singularly passive SISO system Σ of order ns with a minimal
i/s/o representation as in equation (5.9) and with the Hamiltonian pencil as defined in
equation (5.11). Let (A,b,c) be in the controller canonical form. Assume λ ∈ C is an

eigenvalue of (E,H) with algebraic multiplicity m. Let Jλ :=

[
λ 1

. . .
. . .
λ 1

λ

]
∈ Cm×m be the

complex Jordan block of size m. Then, there exists S,P ∈ Cn×m and Q ∈ C1×m such that

H


S

P

Q

= E


S

P

Q

Jλ , i.e.,


A 0 b

0 −AT cT

c −bT 0




S

P

Q

=


S

P

0

Jλ . (5.15)

Proof: Let the characteristic polynomial of A be XA(s) := det(sIn−A). Construct

Q :=
[
XA(λ ) X

(1)
A (λ ) X

(2)
A (λ ) · · · X

(m−1)
A (λ )

]
(5.16)

where X
(i)

A (λ ) :=
di

dsi (XA(s)) |s=λ . We need to find S,P such that AS+ bQ = SJλ , −AT P+

cT Q = PJλ and cS− bT P = 0. Note that the equation AS+ bQ = SJλ , after re-arrangement
reduces to

−AS+SJλ = bQ, (5.17)

which is a Sylvester equation in the unknown S. By construction, we know that λ is the eigen-
value of Jλ , i.e., λ ∈ σ(E,H). Owing to the fact that σ(E,H) has a reflection symmetry with
respect to the imaginary axis (see proof of Lemma 5.6), we get −λ ∈ σ(E,H). Since Σ is
singularly passive, and equation (5.9) is a minimal i/s/o representation of Σ, the system ma-
trix A must be Hurwitz. Therefore, by Lemma 5.2, −λ 6∈ σ(A). Hence σ(Jλ )∩σ(−A) = /0.
Therefore, there exists a unique S that satisfies equation (5.17) ([Ant05, Proposition 6.2]). It
can be verified that this unique S for Q defined in equation (5.16) is given by the following
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Vandermonde matrix:

S :=



1 0 · · · 0

λ 1 · · · 0

λ 2 2λ · · · 0
...

...
. . .

...

λ n−1 (
n−1

1

)
λ n−2 · · ·

(
n−1
m−1

)
λ n−m


∈ Cn×m. (5.18)

Note that the i-th column of S, i.e., si can also be found using the following formula

si =
i∑

`=1

(−1)`+1(λ I−A)−`b
(
X

(i−`)
A (λ )

)
, for i ∈ {1,2, . . . ,m}. (5.19)

In equation (5.19), we have used the fact that λ 6∈ σ(A) because λ ∈ σ(E,H) (see Lemma 5.8).
Similarly, the equation involving P, i.e.,−AT P+cT Q=PJλ can be transformed to the Sylvester
equation AT P+PJλ = cT Q in the unknown P. Arguing like before, this Sylvester equation can
be shown to admit a unique solution because σ(Jλ )∩σ(AT ) = /0. Like before, the i-th column
of P, say pi, can be found using the following formula:

pi =
i∑

`=1

(−1)`+1(λ I +AT )−`cT
(
X

(i−`)
A (λ )

)
, for i ∈ {1,2, . . . ,m}. (5.20)

We have used the fact that λ ∈ σ(E,H) implies −λ ∈ σ(E,H) and therefore by Lemma 5.8,
−λ 6∈ σ(A) =⇒ λ 6∈ σ(−AT ). In order to show that S, P, thus constructed, satisfies cS−bT P=

0, we note that the i-th column of cS−bT P is given by

[cS−bT P]i =
i∑

`=1

(−1)`+1
(

c(λ I−A)−`b−bT (sI +AT )−`cT
)(

X
(i−`)

A (λ )
)

=
i∑

`=1

( d(`−1)

ds(`−1)

(
G(s)+G(−s)

)∣∣∣
s=λ

)(
X

(i−`)
A (λ )

)
. (5.21)

Since λ has algebraic multiplicity m, and det(sE−H) = num(G(s)+G(−s)) (Lemma 5.3), we
have
d(`−1)

ds(`−1) (G(s)+G(−s))
∣∣∣
s=λ

= 0, for ` ∈ {1,2, · · · ,m}. Therefore, the ride hand side of equation

(5.21) evaluates to zero for all ` ∈ {1,2, · · · ,m}; we thus infer that cS−bT P = 0. �

The next proposition is well-known in the literature. However, we present its proof here for
the sake of completeness. This proposition is used to prove our next lemma (Lemma 5.12) that
establishes a relation between the left- and right-vectors of the Hamiltonian matrix pair (E,H)

corresponding to a Lambda-set.

Proposition 5.11. Consider a matrix pencil (sP2−P1) ∈ R[s]m×m, where P2 = PT
2 ,P1 ∈ Rm×m

and det(sP2−P1) 6= 0. Let U ∈ Rm×m1 and L ∈ Rm×m2 be such that P1U = P2UΓ1 and LT P1 =

Γ2LT P2, where Γ1 ∈ Rm1×m1 and Γ2 ∈ Rm2×m2 . Suppose σ(Γ1)∩σ(Γ2) = /0. Then, LT P2U = 0.
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Proof: Clearly, P1U =P2UΓ1⇒LT P1U =LT P2UΓ1 and LT P1 =Γ2LT P2⇒LT P1U =Γ2LT P2U .
Subtracting one equation from the other and defining T := LT P2U , we get the Sylvester equa-
tion T Γ1−Γ2T = 0. Since, by assumption, σ(Γ1)∩σ(Γ2) = /0, there exists a unique T that
solves this Sylvester equation. Note that T = 0 is a solution to this equation. Therefore, by
uniqueness argument, T = 0 is the only solution. Therefore, T = LT P2U = 0. �

Loosely speaking, Proposition 5.11 states that the eigenspace of (P2,P1) spanned by the right-
eigenvector of (P2,P1) corresponding to an eigenvalue λ is always P2-orthogonal with the sub-
space spanned by a left-eigenvector of (P2,P1) corresponding to an eigenvalue other than λ .
Utilizing this in the next lemma we establish a relation between the left- and right-eigenvectors
of the Hamiltonian matrix pair (E,H).

Relation between the left- and right-eigenvectors of (E,H)

Lemma 5.12. Consider the Hamiltonian matrix pencil (sE−H)∈R[s](2n+1)×(2n+1) (see
equation (5.11)) corresponding to a singularly passive SISO system of order ns having a
minimal i/s/o representation as in equation (5.9). Let Λ be a Lambda-set of det(sE−H)

with cardinality ns. Define R := col(V1Λ,V2Λ,V3Λ) such that HR = ERΓΛ, where ΓΛ ∈
Rns×ns , V1Λ,V2Λ ∈ Rn×ns , V3Λ ∈ R1×ns and σ(ΓΛ) = Λ. Then, V T

2Λ
V1Λ =V T

1Λ
V2Λ.

Proof: Define L := col(V2Λ,−V1Λ,−V3Λ). Then,

LT H =
[
V T

2Λ
A−V T

3Λ
c V T

1Λ
AT +V T

3Λ
bT V T

2Λ
b−V T

1Λ
cT
]

(5.22)

Since HR = ERΓΛ, from equation (5.12), we have

AV1Λ +bV3Λ =V1ΛΓΛ (5.23)

−ATV2Λ + cTV3Λ =V2ΛΓΛ (5.24)

cV1Λ−bTV2Λ = 0 (5.25)

Using equations (5.23) - (5.25) in equation (5.22), we have LT H =
[
−ΓT

Λ
V T

2Λ
ΓT

Λ
V T

1Λ
0
]
=

−ΓT
Λ

LT E. Note that σ(−ΓΛ) =−Λ. Since Λ is a Lambda-set (see Definition 2.18), Λ∩(−Λ) =

/0. Therefore, by Proposition 5.11 we conclude that LT ER = 0. Expanding LT ER we get
V T

2Λ
V1Λ =V T

1Λ
V2Λ. �

The next lemma shows that G(s)+G(−s) is the transfer function corresponding to the Hamil-
tonian system ΣHam defined in equation 5.8.

Popov function is the transfer function of a Hamiltonian system

Lemma 5.13. Consider a singularly passive SISO system Σ of order ns with transfer
function G(s) and a minimal i/s/o representation as in equation (5.9). Let the corre-
sponding Hamiltonian pencil be as defined in equation (5.11). Then,

ĉ(sI2n− Â)−1b̂ = G(s)+G(−s).
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Proof: Note that since we are dealing with a SISO system, we can write G(−s) as G(−s)T .
Therefore, G(s) = c(sIn−A)−1b⇒ G(−s) =−bT (sIn+AT )cT . Thus,

G(s)+G(−s)T = c(sI−A)−1b−bT (sI +AT )cT

=
[
c −bT

]sIn−A 0

0 sIn+AT

−1 b

cT

= ĉ(sI2n− Â)−1b̂

This completes the proof of the lemma. �

One of the crucial properties that leads to the main result (Theorem 5.7) of this chapter is
the fact that the first nf Markov parameters of the Hamiltonian system ΣHam are all zero. We
prove this in the next lemma.

A property of the Markov parameters of the Hamiltonian system

Lemma 5.14. Consider a singularly passive SISO system Σ of order ns with a minimal
i/s/o representation as in equation (5.9). Let the corresponding Hamiltonian pencil be as
defined in equation (5.11). Define nf := n−ns. Then,

ĉÂkb̂ = 0, for k ∈ {0,1, . . . ,2(nf−1)}.

Proof: Defining P := Â, L := b̂, M := ĉ in Lemma 2.23. Further, note that here N = 2n and
Ns = 2ns. Therefore, Nf = N−Ns = 2n−2ns = 2nf. Then, it is evident from Lemma 2.23 that
ĉÂkb̂ = 0, for k ∈ {0,1, . . . ,2(nf−1)}. �

An identity relating the eigenvectors of (E,H) and the system matrices of ΣHam

Lemma 5.15. Consider a singularly passive SISO system Σ of order ns with a minimal
i/s/o representation as in equation (5.9). Let the corresponding Hamiltonian pencil be as
defined in equation (5.11). Let Λ,ns,nf,V1Λ,V2Λ, and V3Λ be as defined in Theorem 5.7.
Then, [

−V T
2Λ

V T
1Λ

]
Âkb̂ = 0, for k ∈ {0,1, . . . ,2(nf−1)}.

Proof: We use induction for this proof.
Base step: (k = 0) We have

[
−V T

2Λ
V T

1Λ

]
b̂ = (cV1Λ− bTV2Λ)

T . Using equation (5.25), we

infer
[
−V T

2Λ
V T

1Λ

]
b̂ = 0.

Inductive step: Suppose i 6 2(nf− 1)− 1. Assume
[
−V T

2Λ
V T

1Λ

]
Âib̂ = 0. We prove that[

−V T
2Λ

V T
1Λ

]
Âi+1b̂ = 0. Note that[
−V T

2Λ
V T

1Λ

]
Âi+1b̂ =−V T

2ΛAi+1b+(−1)i+1V T
1ΛA(i+1)T cT

= (−ATV2Λ)
T Aib+(−1)i+1(AV1Λ)

T (cAi)T (5.26)
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Since HR = ERΓΛ, using equations (5.23) and (5.24) in equation (5.26), we have[
−V T

2Λ
V T

1Λ

]
Âi+1b̂ = (V2ΛΓΛ− cTV3Λ)

T Aib+(−1)i+1(V1ΛΓΛ−bV3Λ)
T (cAi)T .

Opening the brackets and cancelling terms with opposite signs, we get[
−V T

2Λ
V T

1Λ

]
Âi+1b̂ =−Γ

T
Λ

[
−V T

2Λ
V T

1Λ

]
Âib̂−V T

3ΛĉÂib̂.

Hence, from the inductive hypothesis and Lemma 5.14, we have
[
−V T

2Λ
V T

1Λ

]
Âi+1b̂ = 0. �

5.3.2 Proof of Theorem 5.7

Now that we have proved all the auxiliary results, we prove Theorem 5.7.
Proof of Statement (1) of Theorem 5.7: We prove this in two-steps.
Step 1 (Construction of VeΛ ∈ R(2n+1)×ns that satisfies equation (5.12)): Lemma 5.9 implies that
(A,B,C) can be assumed to be in controller canonical form as given in Section 5.2.1 without
loss of generality. From the definition of Lambda-sets (Definition 2.18) we know that if λ ∈ Λ

then, λ̄ ∈ Λ. Thus, without loss of generality, we assume that there are α number of complex-
conjugate pairs in Λ and β number of real elements in Λ such that each distinct element λi

in Λ has an algebraic multiplicity mλi . Thus for a Lambda-set with cardinality ns, we have∑2α+β

i=1 mλi = ns.
Now, we associate a matrix Sλi ∈C

n×mλi with each distinct element λi ∈Λ. These matrices
Sλi have a structure as defined in equation (5.18) of the proof of Lemma 5.10, i.e.,

Sλi :=



1 0 · · · 0

λi 1 · · · 0

λ 2
i 2λi · · · 0
...

...
. . .

...

λ
n−1
i

n−1

1

λ
n−2
i · · ·

 n−1

mλi−1

λ
n−mλi
i


(5.27)

Note that since E, H are real matrices, the algebraic multiplicities of λi ∈ σ(E,H) and λ̄i ∈
σ(E,H) are the same. Further, from the structure of Sλi it is evident that S

λ̄i
= S̄λi , where S̄λi is

the complex-conjugate matrix of Sλi . Now we define a matrix VC
1Λ

as follows:

VC
1Λ :=

[
Sλ1 S̄λ1 · · · Sλα

S̄λα
Sλ2α+1 · · · Sλ2α+β

]
∈ Cn×ns (5.28)

VC
1Λ

in equation (5.28) is constructed such that the matrices Sλi and S̄λi corresponding to each
of the complex-conjugate pairs in Λ are appended consecutively and this is followed by the
matrices associated with the real elements in Λ. Using Lemma 5.10, we infer that corre-
sponding to VC

1Λ
in equation (5.28) there exists VC

2Λ
∈ Cn×ns and VC

3Λ
∈ C1×ns such that VC

eΛ
:=
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col(VC
1Λ
,VC

2Λ
,VC

3Λ
) satisfies HVC

eΛ
=EVC

eΛ
JC, where JC ∈Cns×ns is a block diagonal matrix with

each block being a complex Jordan block and σ(JC) = Λ. Now we construct a matrix V1Λ such
that V1Λ :=

[
Re(Sλ1) Im(Sλ1) · · · Re(Sλα

) Im(Sλα
) Sλ2α+1 · · · Sλ2α+β

]
∈ Rn×ns, where

Re(Sλi) and Im(Sλi) denotes the real-part and imaginary-part of the matrix Sλi , respectively.
It can be verified that there exists a nonsingular matrix L ∈ Cns×ns such that VC

1Λ
L = V1Λ,

where V1Λ ∈ Rn×ns . Using this nonsingular matrix L, we now define VeΛ := VC
eΛ

L. It is
easy to verify that VeΛ ∈ R(2n+1)×ns . Thus, HVC

eΛ
= EVC

eΛ
JC =⇒ HVeΛ = EVeΛΓΛ, where

ΓΛ := L−1JCL ∈Rns×ns . Importantly, σ(ΓΛ) = σ(JC) = Λ, albeit unlike the matrix JC, matrix
ΓΛ is in real Jordan form. This shows the existence of a matrix VeΛ that satisfies equation (5.12).

Step 2 (X1Λ is nonsingular): Conforming to the partition of VeΛ in equation (5.12), we
partition VeΛ as VeΛ := col(V1Λ,V2Λ,V3Λ) and define VΛ := col(V1Λ,V2Λ), where V1Λ,V2Λ ∈
Rn×ns and V3Λ ∈ R1×ns . Similarly, partition W , defined in the statement of the theorem, as
follows: W := col(W1,W2) , where W1,W2 ∈ Rn×nf . Recall from the theorem that

[
VΛ W

]
=

col(X1Λ,X2Λ), where X1Λ,X2Λ ∈ Rn×n. Therefore, X1Λ =
[
V1Λ W1

]
. Recall that VC

1Λ
L =V1Λ.

We crucially use this in the next step of the proof.

In order to prove the invertibility of X1Λ, we partition X1Λ as X1Λ :=
[

V11 W11
V12 W12

]
, where

V11 ∈ Rns×ns , V12 ∈ Rnf×ns , W11 ∈ Rns×nf and W12 ∈ Rnf×nf . Conforming to this partition,

we partition VC
1Λ

, as well: VC
1Λ

=
[

VC
11

VC
12

]
, where VC

11 ∈ Cns×ns , VC
12 ∈ Cnf×ns . Since VC

1Λ
L = V1Λ,

clearly V11 =VC
11L. From the structure of VC

1Λ
shown in equation (5.28), it is evident that VC

11 ∈
Cns×ns is a Vandermonde matrix of the form:

VC
11 =



1 · · · 0 1 · · · 1 · · · 0

λ1 · · · 0 λ2 · · · λk · · · 0
...

...
...

...
...

...
...

...

λ
ns−1
1 · · ·

 ns−1

mλ1−1

λ
ns−mλ1
1 λ

ns−1
2 · · · λ

ns−1
k · · ·

 ns−1

mλ2α+β
−1

λ
ns−mλ2α+β

k


.

Since VC
11 is a Vandermonde matrix with 2α +β distinct λis such that their multiplicities add up

to the size of the matrix, VC
11 must be invertible [Ber08, Fact 5.16.5]. Thus, V11 is the product of

two nonsingular matrices VC
11 and L. Therefore, V11 is nonsingular, as well. Now, we concentrate

on the structure of W1. First, recall that

W =
[
b̂ Âb̂ · · · Ânf−1b̂

]
=

[
b Ab · · · Anf−1b

cT −(cA)T · · · (−1)nf−1(cAnf−1)T

]
. (5.29)

Hence, W1 =
[
b Ab · · · Anf−1b

]
=
[

W11
W12

]
. Since (A,b,c) is in the controller canonical form,

W11 is a zero matrix, i.e., W1 :=
[ 0

W12

]
∈Cn×nf , where W12 ∈Rnf×nf has the following structure
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W12 =


0 0 · · · 0 1

0 0 · · · 1 ?

...
... . .

. ...
...

0 1 · · · ? ?

1 ? · · · ? ?

 with ? denoting possibly nonzero entries. Clearly, W12 is nonsingular.

Thus, X1Λ has the following structure

X1Λ =
[
V1Λ W1

]
=:

V11 0

V12 W12

 , (5.30)

Thus, X1Λ is a block lower-triangular matrix with the diagonal blocks being V11 and W12. Since
V11 and W12 are nonsingular matrices, X1Λ is nonsingular. �

Proof of Statement (2) of Theorem 5.7: In order to prove Statement (2) of Theorem 5.7 we need
to show that K := X2ΛX−1

1Λ
is symmetric, i.e., X2ΛX−1

1Λ
= (X2ΛX−1

1Λ
)T . This is clearly equivalent

to showing XT
1Λ

X2Λ = XT
2Λ

X1Λ. With V1Λ,V2Λ as defined in equation (5.12) and

W1 :=
[
b Ab · · · Anf−1b

]
, and W2 :=

[
cT −(cA)T · · · (−1)nf−1(cAnf−1)T

]
,

we have

XT
1ΛX2Λ−XT

2ΛX1Λ =

 V T
1Λ

V2Λ−V T
2Λ

V1Λ V T
1Λ

W2−V T
2Λ

W1

−(V T
1Λ

W2−V T
2Λ

W1)
T W T

1 W2−W T
2 W1

 . (5.31)

We now show that in this 2×2 block representation of XT
1Λ

X2Λ−XT
2Λ

X1Λ, every block is equal to
the zero matrix. For the top left block, we get directly from Lemma 5.12 that V T

1Λ
V2Λ−V T

2Λ
V1Λ =

0. For the off-diagonal blocks we notice the following:

V T
1ΛW2−V T

2ΛW1 =
[
−V T

2Λ
V T

1Λ

]W1

W2

=
[
−V T

2Λ
V T

1Λ

][
b̂ Âb̂ · · · Ânf−1b̂

]
. (5.32)

Using Lemma 5.15 in equation (5.32), it is clear that V T
1Λ

W2−V T
2Λ

W1 = 0. It is now left to
show that the bottom right block, i.e., W T

1 W2−W T
2 W1 = 0. For this purpose, we define J :=0 −In

In 0

 and recall that W =

W1

W2

. Now,

W T
1 W2−W T

2 W1 =
[
W T

1 W T
2

] W2

−W1

=
[
W T

1 W T
2

] 0 In

−In 0

W1

W2

=−W T JW. (5.33)

It is easy to verify that

W T J = col
(

ĉ,−ĉÂ, . . . ,(−1)nf−1ĉÂnf−1
)
. (5.34)
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Therefore, using equation (5.34) in equation (5.33), we have

W T
1 W2−W T

2 W1 =−W T JW =−col
(

ĉ,−ĉÂ, . . . ,(−1)nf−1ĉÂnf−1
)

W

=: [pki]k,i∈{1,2,...,nf}, where pki ∈ R.

Clearly, pki = (−1)kĉÂk+i−2b̂ for k, i ∈ {1,2, . . . ,nf}. Therefore, using Lemma 5.14, we infer
that pki = 0 for all k, i ∈ {1,2, . . . ,nf}. Thus, we have W T

1 W2−W T
2 W1 = 0. �

Proof of Statements (3), (4), (5) and (6) of Theorem 5.7: Note that Kb− cT = X2ΛX−1
1Λ

b− cT .
By construction, X−1

1Λ
b = ens+1, where ens+1 is a vector in Rn with all elements zero except the

(ns+1)-st one which is 1. Therefore, X2ΛX−1
1Λ

b=X2Λens+1 = cT . This proves that Kb−cT = 0.
Next we prove that AT K +KA 6 0. For the sake of brevity, define L (K) := AT K +KA.

Now, in order to prove that L (K)6 0, we first evaluate XT
1Λ

L (K)X1Λ.V T
1Λ

W T
1

L (K)
[
V1Λ W1

]
=

V T
1Λ

L (K)V1Λ V T
1Λ

L (K)W1

W T
1 L (K)V1Λ W T

1 L (K)W1

 . (5.35)

First we prove that V T
1Λ

L (K)V1Λ = 0. Note that KV1Λ = X2ΛX−1
1Λ

V1Λ = V2Λ (by construction).
Therefore,

V T
1ΛL (K)V1Λ =V T

1Λ(A
T K +KA)V1Λ =V T

1ΛATV2Λ +V T
2ΛAV1Λ =

[
V T

2Λ
−V T

1Λ

]
Â

V1Λ

V2Λ

 .
(5.36)

Recall that V1Λ,V2Λ,V3Λ satisfy equation (5.12). Using equation (5.12) in equation (5.36), we
have [

V T
2Λ
−V T

1Λ

]
Â

V1Λ

V2Λ

=
[
V T

2Λ
−V T

1Λ

]V1Λ

V2Λ

ΓΛ− b̂V3Λ


=
(
V T

2ΛV1Λ−V T
1ΛV2Λ

)
ΓΛ +

[
−V T

2Λ
V T

1Λ

]
b̂V3Λ. (5.37)

From Lemma 5.12, we have V T
1Λ

V2Λ−V T
2Λ

V1Λ = 0, and Lemma 5.14 customized to k = 0 gives[
−V T

2Λ
V T

1Λ

]
b̂ = 0. Hence from equation (5.37) we conclude

V T
1ΛL (K)V1Λ = 0. (5.38)

Next we prove that V T
1Λ
(AT K +KA)W1 = 0. Note that V T

1Λ
(AT K +KA)W1 can be rewritten as

−V T
1Λ

[
−K I

]
Â

 I

K

W1 =
[
V T

2Λ
−V T

1Λ

]
Â

W1

W2

=
[
V T

2Λ
−V T

1Λ

]
Â
[
b̂ Âb̂ · · · Ânf−1b̂

]
,

where we have used the fact that KW1 = X2ΛX−1
1Λ

W1 = W2 (by construction). Using Lemma
5.15, we conclude that

V T
1ΛL (K)W1 = 0. (5.39)
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It remains to investigate W T
1 L (K)W1, which is what we do next. Recall again that KW1 =W2.

W T
1 L (K)W1 =W T

1 (AT K +KA)W1 =W T
1 ATW2 +W T

2 AW1 =W T JÂW. (5.40)

Using equation (5.34) in equation (5.40), we have

W T JÂW = col
(

ĉ,−ĉÂ, · · · ,(−1)nf−1ĉÂnf−1
)

Â
[
b̂ Âb̂ · · · Ânf−1b̂

]
=: [`ki]k,i∈{1,2,...,nf}. (5.41)

Here `ki = (−1)k−1ĉÂk+i−1b̂ for k, i ∈ {1,2, . . . ,nf}. From Lemma 5.14 it is clear that except
`nfnf , rest all `ki = 0. Now we claim that `nfnf = (−1)nf−1ĉÂ2nf−1b̂ 6 0. Note that a BIBO
stable, passive SISO system with transfer function G(s) satisfies G( jω)+G(− jω) > 0 for all
ω ∈ R: see [AV06]. Therefore, the singularly passive SISO system Σ being BIBO stable and
passive satisfies G(− jω)+G( jω)> 0. This implies

lim
ω→∞

ω
2nf (G(− jω)+G( jω))> 0 (5.42)

Using Lemma 5.13 in equation (5.42), we have limω→∞ ω2nf ĉ( jωI2n− Â)−1b̂> 0. Expanding
(sI2n− Â)−1 about s = ∞, we have limω→∞(−1)nf( jω)2nf

∑
∞

i=0
1

( jω)i+1 ĉÂib̂> 0. With the help

of Lemma 5.14 this inequality reduces to limω→∞(−1)nf( jω)2nf
∑

∞

i=2nf−1
1

( jω)i+1 ĉÂib̂> 0. Ex-
panding the sum, we have

(−1)nf ĉÂ2nf−1b̂+(−1)nf lim
ω→∞

( jω)2nf
∞∑

i=2nf

1
( jω)i+1 ĉÂib̂ = (−1)nf ĉÂ2nf−1b̂> 0. (5.43)

From equation (5.43), we have (−1)nf−1ĉÂ2nf−1b̂6 0. Hence, W T
1 L (K)W1 6 0. Thus,

XT
1ΛL (K)X1Λ =

V T
1Λ

L (K)V1Λ V T
1Λ

L (K)W1

W T
1 L (K)V1Λ W T

1 L (K)W1

=

0 0

0 W T
1 L (K)W1

 , (5.44)

where the bottom right block, W T
1 L (K)W1 6 0. Therefore, XT

1Λ
L (K)X1Λ 6 0. Recall from

Statement (1) of this theorem that X1Λ is invertible. Hence, by Sylvester’s law of inertia [Ber08,
Corollary 5.4.7], we infer that L (K) = AT K +KA6 0. This completes the proof of Statement
(3) of Theorem 5.7.

From equation (5.44), we know that rank(XT
1Λ

L (K)X1Λ) 6 1 since W T
1 L (K)W1 ∈ R.

Note that if W T
1 L (K)W1 = 0, then we have a K such that AT K +KA = 0 and Kb− cT = 0.

However, this is not possible since the system is not lossless. Therefore, W T
1 L (K)W1 ∈ R \

{0}. Thus, rank(XT
1Λ

L (K)X1Λ) = 1 and this is the minimum rank that can be attained by
XT

1Λ
L (K)X1Λ. Since XT

1Λ
is invertible, the rank of L (K) is 1, as well. Thus, K is the rank-

minimizing solution of the KYP LMI (5.10).
From Statement (3) of Theorem 5.7, we have AT K +KA6 0. Since A is Hurwitz, AT K +

KA6 0 implies that K > 0. This completes the proof of Statement (5) of Theorem 5.7.
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Note that bT K− c = 0 and AT K +KA 6 0 means that K satisfies the singular KYP LMI
(5.10). Therefore, K induces a storage function of the system Σ. This completes the proof of
Statement (6) of Theorem 5.7. �

Now that we have proved Theorem 5.7 we revisit Example 5.5 which could not be solved using
Proposition 5.4.

Example 5.16. Recall that for the system in Example 5.5, n = 3 and ns = 2. Therefore, from
Theorem 5.7, we have nf = 1. The spectral zeros of Σ is given by the set{

−
√

4+
√

5,−
√

4−
√

5,
√

4+
√

5,
√

4−
√

5
}
.

The four Lambda-sets of Σ are:
(a) Λ1 =

{
−
√

4+
√

5,−
√

4−
√

5
}
, (b) Λ2 =

{
−
√

4+
√

5,
√

4−
√

5
}

,

(c) Λ3 =
{√

4+
√

5,−
√

4−
√

5
}
, (d) Λ4 =

{√
4+
√

5,
√

4−
√

5
}

.
We show the computation of storage function KΛ2 corresponding to Lambda-set Λ2 in de-
tails now. Recall from Example 5.5, the eigenvectors of (E,H) corresponding to eigenvalues
−
√

4+
√

5 and
√

4−
√

5 are given by the columns of VeΛ2 as

VeΛ2 =

0.34 −0.85 2.12 −0.35 −0.36 −0.09 0.13

0.01 0.01 0.01 2.27 1.35 0.17 0.18

T

.

Further from Theorem 5.7, we have W = b̂ = col(b,cT ) =
[
0 0 1 11 12 3

]T
. Therefore

as defined in Theorem 5.7, we must have

[
V1Λ W

]
=



0.34 0.01 0

−0.85 0.01 0

2.12 0.01 1

−0.35 2.27 11

−0.36 1.35 12

−0.09 0.17 3


=

 X1Λ

X2Λ

⇒ KΛ2 = X2ΛX−1
1Λ

=


239.53 123.80 11

123.80 79.98 12

11 12 3

.

It is easy to verify that KΛ2b− cT = 0 and AT KΛ2 +KΛ2A6 0. Similarly, the storage functions
corresponding to the other three Lambda-sets are

(a) For Λ1: KΛ1 =


40.75 44.20 11

44.20 48.10 12

11 12 3

, (b) For Λ3: KΛ3 =


146.47 123.80 11

123.80 108.03 12

11 12 3

,

(c) For Λ4: KΛ4 =


345.25 44.20 11

44.20 139.90 12

11 12 3


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Example 5.5 shows that corresponding to different Lambda-sets we have different storage func-
tions of a singularly passive SISO system. In Chapter 6, we revisit this example again to show
that one of these storage functions is the maximal and one of them is the minimal among all the
storage functions of the system Σ.

Note that similar to the singular LQR case, the subspaces spanned by imgVΛ and imgW
with VΛ and W as defined in Theorem 5.7 have interesting system-theoretic interpretations.
Using the parallel between the output-nulling representations of Σp (in equation (2.12)) and
ΣHam (in equation (5.11)), we define P := Â, L := b̂, M := ĉ, U1 := E and U2 := H. Further,
we have degdet(sE −H) = 2ns. Therefore, Ns = 2ns and Nf = N− Ns = 2n− 2ns = 2nf.
Hence, Theorem 2.24, Theorem 2.25, and Lemma 2.26 can be directly applied to ΣHam. On
choosing a Lambda-set Λ of det(sE−H) such that Λ (C− it is evident from Lemma 2.26 that
imgVΛ is the largest good (Â, b̂)-invariant subspace inside the kernel of ĉ. Hence, the good slow
subspace of ΣHam is given by Ow = imgVΛ if Λ (C−. Further, it is evident from Theorem 2.24
that imgW ( Rs, where W is as defined in Theorem 5.7 and Rs is the fast subspace of ΣHam.
Thus, we have a direct-sum decomposition of the state-space R2n of the Hamiltonian system as
illustrated in Figure 5.2.

Dimension: ns
Bad slow subspace

Dimension: ns
⊕Good slow subspace: img

[
V1Λ

V2Λ

]
Slow subspace of dimension 2ns Fast subspace of dimension 2nf⊕

Condition: Λ (C−

R2n: State-space of the Hamiltonian system

Figure 5.2: A direct-sum decomposition of the state-space of the Hamiltonian system ΣHam

Further, from Theorem 5.7 and equation (5.29) it is evident that X1Λ is nonsingular and
X1Λ =

[
V1Λ W1

]
, where W1 =

[
b Ab · · · Anf−1b

]
. Hence, the state-space Rn of Σ can be

decomposed as:

imgV1Λ ⊕ imgW1
(Depends on Λ)

⊕⊕ ⊕

Rn: State-space of a singularly passive system

imgb img(Anf−1b)img(Ab) · · ·

Figure 5.3: A direct-sum decomposition of the state-space of a singularly passive system

Interestingly, note that the subspace imgV1Λ depends on the choice of Λ. On the other
hand, the subspace imgW1 is independent of the choice of Λ, since it is spanned by the columns
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of a truncated controllability matrix that depends only on A, b, and c matrices (see equation
(5.29)). Hence, no matter what Lambda-set we choose for the computation of a rank-minimizing
solution of the KYP LMI the subspace complementary to the eigenspace of ΣHam corresponding
to a Lambda-set always remains the same.

5.4 Algorithm to compute rank-minimizing solutions of a KYP
LMI: SISO case

In this section we use Theorem 5.7 to propose an algorithm to compute rank-minimizing solu-
tions of a singularly passive SISO system. Interestingly, note that one can retrieve the algorithm
to compute solutions of ARE (rank-minimizing solutions of KYP LMI) corresponding to a reg-
ularly passive SISO system as a special case of Algorithm 5.16: we discuss this after presenting
the algorithm. Hence Algorithm 5.16 is a generalized algorithm to compute rank-minimizing
solutions of the KYP LMI (storage functions) corresponding to a passive SISO system provided
such a system does not admit spectral zeros on the imaginary axis.

Algorithm 5.16 Algorithm to compute rank-minimizing solutions of a KYP LMI.

Input: (A,b,c) matrices corresponding to a passive SISO system Σ.
Output: K = KT ∈ Rn×n.

1: Construct (E,H) as defined in equation (5.7) and ns := degdet(sE−H)/2.
2: Use generalized real-Schur decomposition algorithm on (E,H) to compute basis of

eigenspace corresponding to Lambda-set Λ of det(sE − H). Let columns of VeΛ ∈
R(2n+1)×ns be the basis.

3: Partition VeΛ := col (V1Λ,V2Λ,V3Λ) where V1Λ,V2Λ ∈ Rn×ns,V3Λ ∈ Rns and define VΛ :=
col(V1Λ,V2Λ).

4: if ns 6= n then

5: Construct Â =

A 0

0 −AT

 and b̂ =

 b

cT


6: Compute nf = n−ns and construct W :=

[
b̂ Âb̂ Â2b̂ · · · Ânf−1b̂

]
∈ R2n×nf .

7: Construct X :=
[
VΛ W

]
∈ R2n×n

8: else
9: Construct X :=VΛ ∈ R2n×n

10: end if

11: Partition X as X =:

X1Λ

X2Λ

 where X1Λ,X2Λ ∈ Rn×n.

12: Compute the storage function: K = X2ΛX−1
1Λ
∈ Rn×n.

Now, we list down a few special cases of Algorithm 5.16.
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1. Systems with ns = n: This is the case when we deal with regularly passive SISO systems.
In this case, the regularity condition on D+DT is satisfied. Hence, they admit an ARE. The
cardinality of the Lambda-sets in this case is equal to the system’s order n. This method of find-
ing solutions of the ARE is exactly similar to the method proposed in [vD81] and Proposition
5.4.

2. Systems with nf = n: This is the case when det(sE−H) is a nonzero constant, i.e., det(sE−
H) ∈ R \ {0}. These are singularly passive systems of order 0. We also call these systems
strongly passive. A more formal definition of a strongly passive system is as follows:

Definition 5.17. A singularly passive SISO system with transfer function G(s) (with no com-
mon poles and zeros) is called strongly passive if the numerator of G(s)+G(−s) is a nonzero
constant.

This term “strongly” passive system stems from the fact that such a system does not admit any
exponential lossless trajectories. We elaborate on this idea of lossless trajectories in Chapter 6.
Note that for strongly passive systems, the Lambda-sets are empty. In this scenario, X in Step
(8) of Algorithm 5.16 is given by W . This answers the second question we posed after Lemma
5.6 in Section 5.3.

Now that we have an algorithm to compute the rank-minimizing solutions of a KYP LMI corre-
sponding to a singularly passive SISO system, we list the flop-counts of each step of Algorithm
5.16 in Table 5.3.

Step Operations Algorithm Flops

1 Matrix concatenation Merely bookkeeping 0

2 Eigenvector computation QZ-algorithm O(n3)

3 Matrix partitioning Merely bookkeeping 0

5 Matrix concatenation Merely bookkeeping 0

6 (nf−1) Matrix-vector multiplication Normal matrix-vector multiplication O
(
n3
f

)
7 - 11 Matrix concatenation and partitioning Merely bookkeeping 0

12
Matrix inversion Cholesky, LU, Gaussian elimination O

(
n3)

Matrix-matrix multiplication Normal matrix-matrix multiplication O
(
n3)

Table 5.3: Flop-count of each step in Algorithm 5.16

From Table 5.3 it is evident that the total flop count for Algorithm 5.16 is O
(
n3). A

standard method to compute solutions of LMI is to use semi-definite programming (SDP) tech-
niques. As discussed in the introduction of this chapter, it is known in the literature that solving
an LMI using SDP techniques requires generically O

(
n6) flops, while exploitation of certain

structures in the problem may lead to an improvement up to O
(
n4.5) flops [VBW+05]. Hence,



5.4 Algorithm to compute rank-minimizing solutions of a KYP LMI: SISO case 129

Algorithm 5.16 is expected to perform faster when compared with SDP based optimization
packages. To demonstrate this we compare the time required by Algorithm 5.16 to compute
a solution of KYP LMI (5.2) to that required by two standard MATLAB based optimization
packages viz., CVX: MATLAB Software for Disciplined Convex Programming (CVX) [GB13]
and Yet Another LMI Parser (YALMIP) [Löf04]. Apart from these two packages, we also com-
pare Algorithm 5.16 with the spectral factorization technique (SFT) described in [WT98]. We
use a one-variable Euclidean division algorithm to implement this technique. We do not com-
pare Algorithm 5.16 with the deflating subspace based method in [Rei11], [RRV15] due to the
absence, to the best of our knowledge, of standard packages to implement it. The experimental
setup for the comparison of Algorithm 5.16 with standard methods is as follows.

5.4.1 Experimental setup and procedure

The experiment has been carried out on an Intel(R) Xeon(R) computer operating at 3.50 GHz
with 64 GB RAM using Ubuntu 16.04 LTS operating system. Numerical computational package
MATLAB has been used to implement Algorithm 5.16 and the standard tic-toc command of
MATLAB is used to record the computational time. Execution time for the Euclidean division
based spectral factorization algorithm is also computed using the tic-toc command. The
SDP solver used for both CVX and YALMIP is sedumi. The predefined numerical precision
for the solver has been set to 10−12. The total computational time for CVX is obtained by the
command cvx cputime, which includes both CVX modelling time and solver time. Sim-
ilarly, the field yalmiptime is used to obtain the total computational time, which includes
modelling and solver time, for YALMIP.

Randomly generated transfer functions corresponding to singularly passive SISO systems
of 5 different orders are used to compare the computational time of Algorithm 5.16 with that of
CVX, YALMIP and SFT implemented in MATLAB. The computation time for each order has
been averaged over fifteen randomly generated transfer functions. Further, in order to nullify
the effect of CPU delays the computational time to calculate solutions of the KYP LMI (5.2)
for each transfer function is further averaged over hundred iterations.

5.4.2 Experimental results

Computational time: Figure 5.4 demonstrates the time taken to compute the storage func-
tions of singularly passive systems using CVX, YALMIP, SFT and Algorithm 5.16. From Figure
5.4, it is evident that Algorithm 5.16 is approximately 103 times faster compared to CVX and
YALMIP. Further, it is also clear that although the execution time for Algorithm 5.16 is better
than that of SFT, it is comparable.

Computational error: Since SDP solvers have an inherent numerical tolerance associated
with them, the solutions of LMI (5.2) found using CVX and YALMIP are within a prede-
fined numerical precision. However, all the operations performed in Algorithm 5.16 are imple-
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Figure 5.4: Plot of computational time to solve KYP LMI (5.2) for singularly passive SISO
systems using CVX, YALMIP, SFT and Algorithm 5.16.

mentable using algorithms that are not only numerically stable [Wat02] but also do not admit
any numerical tolerance. A few of such numerically stable algorithms are suggested in Table
5.3. Evidently, Algorithm 5.16 is better than CVX and YALMIP from a numerical precision
viewpoint as well. On the other hand, since SFT based algorithms use matrix-matrix multipli-
cation for its implementation, the error associated with SFT is comparable to that of Algorithm
5.16. However, one of the major drawbacks of SFT is that the solution obtained from the SFT
algorithm corresponds to the KYP LMI (5.2) when the system matrices (A,b,c) are in the con-
troller canonical form. An advantage of the method we propose in this chapter (Algorithm 5.16)
is that it leads to interesting system-theoretic interpretations that we reveal in the chapter that
follows. Such system-theoretic interpretations might not be possible using the SFT method.

5.5 Summary

In this chapter, we presented a method to compute the rank-minimizing solutions of the KYP
LMI corresponding to a singularly passive SISO system (Theorem 5.7). In order to derive
Theorem 5.7, we crucially used the properties of the Markov parameters of the Hamiltonian
system corresponding to a singularly passive SISO system (Lemma 5.14) and the fact that a
singularly passive SISO system does not share spectral zeros and poles (Lemma 5.8). The
method of computing the rank-minimizing solutions of the KYP LMI proposed in this chapter
has a striking similarity to the method to compute the maximal solutions of LQR LMI in Chapter
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2 (Theorem 2.30). We have shown that, similar to Theorem 2.30, augmenting a basis of the
eigenspace of the Hamiltonian matrix pair (E,H) corresponding to a Lambda-set with a basis
of a subspace of the fast subspace of ΣHam is the crucial idea that leads to Theorem 5.7.

Interestingly, it is known in the literature that a KYP LMI admits a maximal and a minimal
solution. These solutions turn out to be rank-minimizing solutions of the KYP LMI as well. In
the next chapter we show that such extremal solutions of the KYP LMI can be computed using
the method we developed, in this chapter, to compute rank-minimizing solutions of the KYP
LMI (Theorem 5.7). Further, for regularly passive systems it is known that the solutions of
the corresponding ARE are related to the trajectories of minimal dissipation of the system, we
call such trajectories lossless trajectories. Hence, to develop a generalized Riccati theory for
the passive case, it is imperative that the notion of lossless trajectories is linked to the rank-
minimizing solutions of the KYP LMI for the singularly passive SISO systems as well. We
develop this theory in the next chapter.





Chapter 6

Lossless trajectories and extremal storage
functions of passive systems

6.1 Introduction

It is well-known that the set of all storage functions of a regularly passive system admits a
partial ordering by matrix semi-definiteness [Wil71]. Likewise the set of all storage functions
of a singularly passive SISO system is also partially ordered. The likeness does not end here,
however. Like in the case of regularly passive systems, in the case of singularly passive SISO
systems also, there exist extremum storage functions. For the regularly passive case, these
extremum storage functions happen to be maximal and minimal solutions of the corresponding
ARE. We show in this section that, in absence of an ARE for singularly passive systems, these
extremum storage functions are supplied by applying Theorem 5.7 (or, equivalently, Algorithm
5.16), with suitable choices of the Lambda-sets. This is the content of one of our main results
Theorem 6.7. The extremal solutions of the KYP LMI corresponding to a passive system have
interesting system-theoretic interpretations when viewed from a network-theoretic perspective.
For example, for an RLC network the minimal energy required to change the states of the
system from 0 to an arbitrary state x0 ∈ Rn is related to the maximal storage function Kmax of
the system:

xT
0 Kmaxx0 = inf

col(u,y)∈Σ

∫ 0

−∞

(
2uT y

)
dt. (6.1)

For this reason, xT
0 Kmaxx0 is also called the required supply at t = 0 due to col(u,y) [WT98,

Remark 5.14]. The input-output trajectories col(u,y) of the system that achieve this infimum
are therefore called the trajectories of optimal-charging of the RLC circuit. Similarly, the max-
imum amount of energy that can be extracted from an RLC circuit when its state is changed
from any arbitrary initial condition x0 to 0 is related to the minimal storage function of Kmin of
the system:

xT
0 Kminx0 = sup

col(u,y)∈Σ

∫ +∞

0
−
(
2uT y

)
dt. (6.2)

133
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Hence, xT
0 Kminx0 is called the available storage due to col(u,y) [WT98, Remark 5.14]. The

trajectories that achieve this supremum are called the trajectories of optimal-discharging for an
RLC circuit. In this chapter we provide a method, similar to that in Chapter 3, to design state-
feedback controllers that confine the set of system trajectories to its optimal-charging/discharging
trajectories.

The main tool used in arriving at Theorem 6.7 is the dissipation inequality (5.5); especially,
an extreme case of the same, when the inequality (5.5) reduces to an equality. A solution of the
dynamical equations (5.1), for which the dissipation inequality is satisfied as an equation, is
often called lossless. For such a solution, the input power gets entirely utilized in storage of
energy. In the next section, we formally define this notion of lossless solutions and provide a
method to construct such solutions for a given singularly passive SISO system (Lemmas 6.1
and 6.2). Thereafter, we utilize these solutions to find the extremal solutions of the KYP LMI
and to design state-feedback controllers to confine the set of system trajectories to its optimal-
charging/discharging trajectories.

6.2 Characterization of lossless trajectories

Recall from Figure 5.3 that the state-space Rn of a singularly passive SISO system can be
decomposed as Rn = imgV1Λ⊕imgW1, where V1Λ and W1 are as defined in Theorem 5.7 and
equation (5.29), respectively. Hence, any arbitrary initial condition x0 ∈Rn of the system Σ can
be decomposed as x0 = x0s+ x0f, where x0s ∈ imgV1Λ and x0f ∈ imgW1. In what follows we
present two lemmas, Lemma 6.1 and Lemma 6.2, that characterizes certain special trajectories
of the system Σ when the initial conditions of the system are from the subspace imgV1Λ and
imgW1, respectively. In the sequel, we show that these are the trajectories for which the input
power gets entirely utilized in storage of energy. For reasons that would be clear after the
lemmas we call imgV1Λ and imgW1 the space of regular and irregular initial conditions of Σ,
respectively.

Trajectories of a singularly passive system for regular initial conditions

Lemma 6.1. Consider a singularly passive SISO system Σ of order ns with a minimal
i/s/o representation as in equation (5.9). Assume Λ,V1Λ,V2Λ, and V3Λ be as defined in
Theorem 5.7. Assume the initial condition of the system Σ be x0 :=V1Λβ , where β ∈Rns .
Define z0 :=V2Λβ , x̄s :=V1ΛeΓtβ , z̄s :=V2ΛeΓtβ , ūs := FV1ΛeΓtβ and ȳs := cx̄s, where
F : Rn→ R such that V3Λ = FV1Λ. Then, the following statements are true:

(1) col(x̄s, z̄s, ūs) ∈ ΣHam corresponding to initial condition col(x0,z0).

(2) col(x̄s, ūs, ȳs) ∈ Σ corresponding to initial condition x0.

Proof: On using Â, b̂ and ĉ as defined in equation (5.11) and the fact that y = cx, the proof of
this lemma is exactly similar to the proof of Lemma 3.7. Hence, we do not repeat the proof
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here. �

Trajectories of a singularly passive system for irregular initial conditions

Lemma 6.2. Consider a singularly passive SISO system Σ of order ns with a minimal
i/s/o representation as in equation (5.1). Let the corresponding Hamiltonian system ΣHam

be as defined in equation (5.11). Let x0k ∈ Rn be as given in the table below, where
k ∈ {0,1, · · · ,nf− 1}. Let z0k ∈ Rn, x̄fk, z̄fk ∈ Cnimp and ūfk ∈ Cimp as defined as in the
table below.

k x0k z0k x̄fk z̄fk ūfk

0 α0b α0cT 0 0 -α0δ

1 α1Ab −α1(cA)T -α1bδ −α1cT δ -α1δ (1)

2 α2A2b α2(cA2)T -α2

(
bδ (1)+Abδ

)
−α2

(
−cT δ (1)+(cA)T δ

)
-α2δ (2)

...
...

...
...

...
...

nf−1 αnf−1Anf−1b (−1)nf−1αnf−1(cAnf−1)T -αnf−1
∑nf−2

i=0 Anf−2−ibδ (i) −αnf−1
∑nf−2

i=0 (−1)i(cAnf−2−i)T δ (i) -αnf−1δ (nf−1)

Let x0f :=
∑nf−1

k=0 x0k, x̄f :=
∑nf−1

k=0 x̄fk, z̄f :=
∑nf−1

k=0 z̄fk, ūf :=
∑nf−1

k=0 ūfk and ȳf = cx̄f.
Then the following statements are true:

(1) col(x̄f, z̄f, ūf) ∈ ΣHam corresponding to initial condition col(x0f,z0f).

(2) col(x̄f, ūf, ȳf) ∈ Σ corresponding to initial condition x0f.

Proof: On using Â, b̂ and ĉ as defined in equation (5.11) and the fact that y = cx, the proof of
this lemma is exactly similar to the proof of Lemma 3.6. Hence, we do not repeat the proof. �

Note the primary difference between Lemma 3.6 and Lemma 6.2 is that the costates z̄ corre-
sponding to the optimal trajectories in case of singular LQR problems are zero but for singularly
passive SISO systems, the costates are non-zero. The reason for the costates in singular LQR
problems showing such zero structure is due to Statement (2) of Lemma 2.36.

Now we claim that the trajectories characterized in Lemma 6.1 and Lemma 6.2 are indeed
lossless trajectories, trajectories for which the rate of change of stored energy is equal to the
power supplied, of a singularly passive system. However, before that we need to formally define
a lossless trajectory.

Definition 6.3. Consider a passive SISO system Σ with a minimal i/s/o representation as in
equation (5.9). Let col(x,u,y) ∈ Cn+1+1

imp be a trajectory in Σ. Then, col(x,u,y) is called a
lossless trajectory if there exists a solution K = KT ∈Rn×n of the corresponding KYP LMI (5.2)
such that

d
dt

(
xT Kx

)
= 2uy for all t ∈ R. (6.3)

Note that corresponding to an initial condition in imgV1Λ and with input ūs as defined in
Lemma 6.1, the unique state and output of the system Σ is given by x̄s and ȳs defined in Lemma
6.1.
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Slow lossless trajectories of a singularly passive system

Lemma 6.4. Consider a singularly passive SISO system Σ of order ns. Let x̄s, ūs, and
ȳs be as defined in Lemma 6.1. Then, col(x̄s, ūs, ȳs) is a lossless trajectory of Σ in the
sense of Definition 6.3.

Proof: Let V := col(V1Λ,V2Λ), where V1Λ,V2Λ are as defined in Lemma 6.1. As defined

in Theorem 5.7, let W :=
[
b̂ Âb̂ . . . Ânf−1b̂

]
∈ R2n×nf and

[
V W

]
=:

X1

X2

. Then, by

Theorem 5.7, K := X2X−1
1 is a solution of the singular KYP LMI (5.10). Note that

d
dt

(
xT Kx

)
= ẋT Kx+ xT Kẋ =

x

u

T AT K +KA Kb− cT

bT K− c 0

x

u

+2ucx. (6.4)

From Statement 3 of Theorem 5.7, we know that Kb− cT = 0. Further, y = cx and therefore,

d
dt

(
xT Kx

)
= xT (AT K +KA)x+2uy (6.5)

Therefore, from equation (6.5), we have

x̄T
s (A

T K +KA)x̄s+2ūsȳs = (V1ΛeΓt
β )T (AT K +KA)(V1ΛeΓt

β )+2ūsȳs

= β
T eΓT tV T

1Λ(A
T K +KA)V1ΛeΓt

β +2ūsȳs. (6.6)

From equation (5.38), we know that V T
1Λ
(AT K +KA)V1Λ = 0. Using this in equation (6.6) we

therefore have

x̄T
s (A

T K +KA)x̄s+2ūsȳs = 2ūsȳs. (6.7)

Therefore, equation (6.5) and equation (6.7) gives d
dt

(
xT Kx

)
|col(x̄s,ūs,ȳs) = 2ūsȳs. This proves

that col(x̄s, ūs, ȳs) is a lossless trajectory. �

Note that the lossless trajectories obtained in Lemma 6.4 are exponential in nature with expo-
nents given by the spectral zeros of the system. Therefore, we call such trajectories the slow
lossless trajectories of Σ. Thus, the slow lossless trajectories of Σ are obtained when the initial
conditions of the system are from imgV1Λ. This is why we call imgV1Λ the space of regular
initial conditions.

In the next lemma we show that the impulsive trajectories characterized in Lemma 6.2
are indeed lossless trajectories in the sense of Definition 6.3. Note that since the trajectories
characterized in Lemma 6.2 are from the space of impulsive-smooth distributions, Definition
6.3 does not preclude the possibility of multiplication of δ and its derivatives with them-
selves. Hence we treat equation (6.3) formally here, i.e., equation (6.3) is said to hold if the
expression d

dt

(
xT Kx

)
−2uT y is zero as a function for t ∈ (0,∞) and each of the coefficients of

δ , δ̇ , . . . ,δ (k), . . . and their powers is zero in the impulsive part of the expression.
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Fast lossless trajectories of a singularly passive system

Lemma 6.5. Consider a singularly passive SISO system Σ of order ns. Let x̄f, ūf, and
ȳf be as defined in Lemma 6.2. Then, col(x̄f, ūf, ȳf) is lossless in the sense of Definition
6.3.

Proof: Since ΣHam is a linear system, from Lemma 6.2, it is clear that the trajectory in ΣHam,
corresponding to initial condition (x0,z0) =

∑nf−1
k=0 Âkb̂αk, can be characterized as

x̄f

z̄f

=−

W1

W2





0 δ δ (1) δ (2) · · · δ (nf−2)

0 0 δ δ (1) · · · δ (nf−3)

0 0 0 δ · · · δ (nf−4)

...
...

...
... · · ·

...

0 0 0 0 · · · δ (1)

0 0 0 0 · · · δ

0 0 0 0 · · · 0


︸ ︷︷ ︸

Ω



α0

α1

α2

α3
...

αnf−1


︸ ︷︷ ︸

α

(6.8)

ūf =−
[
δ δ (1) δ (2) · · · δ (nf−1)

]
α (6.9)

where W1 =
[
b Ab · · · Anf−1b

]
and W2 =

[
cT −(cA)T · · · (−1)nf−1(cAnf−1)T

]
. From

equation (6.8), we have x̄f =−W1Ωα .

Now, construct a Lambda-set of det(sE−H). Let a basis of the ns-dimensional eigenspace
corresponding to Λ be the columns of VΛ := col(V1Λ,V2Λ,V3Λ), where V1Λ,V2Λ ∈ R2n×ns and

V3Λ ∈ R1×ns . Define V := col(V1Λ,V2Λ) and
[
V W

]
=:

X1Λ

X2Λ

. Then, by Theorem 5.7,

K := X2ΛX−1
1Λ

is a solution of the singular KYP LMI (5.10). Therefore, from equation (6.5), we
get

d
dt

(
xT Kx

)
= xT (AT K +KA)x+2uy. (6.10)

Evaluating the right hand side of equation (6.10) corresponding to the trajectories col(x̄f, ūf, ȳf),
we have

x̄T
f (A

T K +KA)x̄f+2ūfȳf = α
T

Ω
TW T

1 (AT K +KA)W1Ωα +2ūfȳf (6.11)

From the proof of Statement 3 of Theorem 5.7, we have

W T
1 (AT K +KA)W1 = diag(0nf−1,nf−1,r), where r = (−1)nf ĉÂ2nf−1b̂. (6.12)
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Using equation (6.12) and Ω from equation (6.8) in equation (6.11), we have

x̄T
f (A

T K +KA)x̄f+2ūfȳf =

α
T



0 0 · · · 0 0

δ 0 · · · 0 0
...

...
. . .

...
...

δ (nf−3) δ (nf−4) · · · 0 0

δ (nf−2) δ (nf−3) · · · δ 0



 0nf−1,nf−1 0

0 r





0 δ · · · δ (nf−3) δ (nf−2)

0 0 · · · δ (nf−4) δ (nf−3)

...
...

. . .
...

...

0 0 · · · 0 δ

0 0 · · · 0 0


α +2ūfȳf

= 0+2ūfȳf = 2ūfȳf. (6.13)

Using equation (6.13) in equation (6.11) we have d
dt

(
xT Kx

)
|col(x̄f,ūf,ȳf) = 2ūfȳf. Therefore,

the trajectory col(x̄f, ūf, ȳf) is lossless in the sense of Definition 6.3. �

Note that the lossless trajectories obtained in Lemma 6.2 are impulsive in nature. Therefore, we
call such trajectories the fast lossless trajectories of Σ. Thus, the fast lossless trajectories of Σ are
obtained when the initial conditions of the system are from imgW1. This is why we call imgW1

the space of irregular initial conditions. Interestingly, unlike the slow lossless trajectories of
a singularly passive system, the fast lossless trajectories of a singularly passive system do not
depend on the spectral zeros of the system.

On combining Lemma 6.4 and Lemma 6.5, we get one of the main results of this chapter.

Lossless trajectories of a singularly passive system

Theorem 6.6. Consider a singularly passive SISO system Σ of order ns with any ar-
bitrary initial condition x0. Define x̄ := x̄s+ x̄f, ū := ūs+ ūf and ȳ := ȳs+ ȳf, where
col(x̄s, ūs, ȳs) and col(x̄f, ūf, ȳf) are trajectories as defined in Lemma 6.1 and Lemma
6.5, respectively. Then, the following statements are true:

(1) col(x̄, ū, ȳ) is a unique trajectory of Σ corresponding to initial condition x0.

(2) col(x̄, ū, ȳ) is lossless in the sense of Definition 6.3.

Proof: (1): From Figure 5.3 we know that any initial condition x0 of the system Σ can
be uniquely written as x0 = x0s + x0f, where x0s ∈ imgV1Λ and x0f ∈ imgW1. The unique
lossless trajectory corresponding to a initial condition x0s and x0f of Σ is col(x̄s, ūs, ȳs) and
col(x̄f, ūf, ȳf), respectively. Thus, by linearity of the system Σ, it directly follows that col(x̄, ū, ȳ)
is a unique trajectory in Σ.
(2): In order to prove this statement, we evaluate the right-hand side of the equation (6.5) for
the trajectory col(x̄, ū, ȳ).

d
dt
(xT Kx)|col(x̄,ū,ȳ) = x̄T (AT K +KA)x̄+2ūȳ = (x̄s+ x̄f)T (AT K +KA)(x̄s+ x̄f)+2ūȳ. (6.14)

From equation (6.7) and equation (6.13), we know that x̄T
s (A

T K +KA)x̄s = 0 and x̄T
f (A

T K +

KA)x̄f = 0, respectively. Further, using the fact that x̄s =V1ΛeΓtβ and x̄f =W1Ωα in equation
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(6.11), we have

d
dt
(xT Kx)|col(x̄,ū,ȳ) = x̄T

f (A
T K +KA)x̄s+ x̄T

s (A
T K +KA)x̄f+2ūȳ

= α
T

Ω
TW T

1 (AT K +KA)V1ΛeΓt
β +β

T eΓT tV T
1Λ(A

T K +KA)W1Ωα +2ūȳ. (6.15)

Recall from equation (5.39) that W T
1 (AT K +KA)V1Λ = 0. Using this in equation (6.15) , we

therefore have d
dt (x

T Kx)|col(x̄,ū,ȳ) = 2ūȳ. Thus, col(x̄, ū, ȳ) is lossless. �

From Theorem 6.6 it is evident that a singularly passive system Σ not only admits exponential
lossless trajectories but also admits impulsive lossless trajectories.

The lossless trajectories of a singularly passive system corresponding to different initial
conditions, characterized in Lemma 6.1 and Lemma 6.2, can therefore be listed in a table as
follows:

x0 x(t) u(t) y(t)

V1Λβ V1ΛeΓtβ V3ΛeΓtβ cV1ΛeΓtβ

α0b 0 −α0δ 0

α1Ab −α1bδ −α1δ (1) −α1cbδ

α2A2b −α2

(
bδ (1)+Abδ

)
−α2δ (2) −α2

(
cbδ (1)+ cAbδ

)
...

...
...

...

αnf−1An−1b −αnf−1
∑nf−2

i=0 Anf−2−ibδ (i) −αnf−1δ (nf−1) −αnf−1
∑nf−2

i=0 cAnf−2−ibδ (i)

Table 6.1: Table to show the lossless trajectories of a singularly passive system Σ corresponding
to different initial conditions.

Note that Table 6.1 and Table 3.1 are similar. This hints at an underlying similarity in the
theory of singular LQR problems and singularly passive systems. We discuss this in details in
Chapter 8.

Recall that for a special class of singularly passive SISO systems called strongly passive
systems the Hamiltonian pencil satisfies det(sE −H) ∈ R \ {0} (see Definition 5.17). This
implies that such systems do not admit a Lambda-set. Hence, from Table 6.1 it is evident that
strongly passive systems do not admit slow lossless trajectories. Such systems admit fast loss-
less trajectories only. Since these systems do not admit any slow lossless trajectories, loosely
speaking, it means that none of the slow trajectories of such a system satisfy the dissipation
inequality with an equality. Hence, all the slow trajectories results in dissipation of energy. This
is the reason we call such systems strongly passive systems.

Now that we have characterized the lossless trajectories of singularly passive SISO sys-
tems, we show that like regularly passive systems, singularly passive systems admit extremal
storage functions.
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6.3 Extremal storage functions

At the very outset of this section, we present the main result of this section that establishes the
existence of two special storage functions, denoted by Kmax and Kmin, such that, for every other
storage function K we must have Kmin 6 K 6 Kmax. The matrices Kmax and Kmin are called
the extremal storage functions of a passive system. We also show that these extremal storage
functions can be constructed using Theorem 5.7 with suitably chosen Lambda-sets.

Extremal solutions of the KYP LMI

Theorem 6.7. Consider a singularly passive SISO system Σ of order ns with a minimal
i/s/o representation as in equation (5.9). Let the corresponding Hamiltonian pencil pair
(E,H) be as defined in equation (5.11). Let Λmin and Λmax be a pair of Lambda-sets
of det(sE −H) such that Λmin ( C− and Λmax ( C+. Suppose Kmin and Kmax are the
storage functions of Σ constructed using Theorem 5.7 corresponding to Lambda-sets Λmin

and Λmax, respectively. Then, for all K that satisfies the singular KYP LMI (5.10), the
following inequality holds:

Kmin 6 K 6 Kmax.

To prove Theorem 6.7, we need a few auxiliary results analogous to Lemma 2.37 for
singular LQR problems. The proofs of these auxiliary results follows the same line of reasoning
as that of the proof of Lemma 2.37.

Algebraic relations satisfied by the solutions of a KYP LMI

Lemma 6.8. Consider a singularly passive SISO system Σ of order ns with a minimal
i/s/o representation as in equation (5.9). Define nf := n− ns. Let K be any solution of
the corresponding singular KYP LMI (5.10). Then,

KAαb = (−1)α(cAα)T , for any α ∈ {0,1,2, . . . ,nf−1}.

Proof: We prove Lemma 6.8 using induction and Lemma 5.14.
Base case: (α = 0) Note that for any solution K = KT of the LMI (5.10), we have Kb−cT = 0.
Thus, Kb = cT is trivially true.

Inductive step: Suppose α 6 nf− 1. Assume KA(α−1)b = (−1)(α−1)
(

cA(α−1)
)T

, we show

that KAαb = (−1)α (cAα)T .

Pre- and post-multiplying AT K +KA by (A(α−1)b)T and A(α−1)b, respectively, we get:(
A(α−1)b

)T (
AT K +KA

)(
A(α−1)b

)
6 0. Opening the brackets and using the inductive hy-
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pothesis, the last inequality takes the form:

(Aαb)T KA(α−1)b+(A(α−1)b)T KAαb6 0

⇒ (−1)(α−1) ((cA2α−1b)T +(cA2α−1b)
)
6 0

⇒ (−1)(α−1)
[
c −bT

]A2α−1 0

0 (−1)2α−1(cA2α−1)T

 b

cT

6 0

⇒ (−1)(α−1)ĉÂ2α−1b̂6 0. (6.16)

Recall from Lemma 5.14 that ĉÂkb̂ = 0 for k ∈ {1, . . . ,2(nf−1)}. Since α ∈ {1,2, · · · ,nf−1},
using Lemma 5.14 in inequality (6.16), we get

(−1)(α−1)ĉÂ2α−1b̂ = (−1)(α−1) ((cA2α−1b)T +(cA2α−1b)
)
= 0

⇒
(

A(α−1)b
)T (

AT K +KA
)(

A(α−1)b
)
= 0. (6.17)

Since AT K +KA is sign-semidefinite, from equation (6.17) we infer that(
AT K +KA

)
A(α−1)b = 0⇒ AT KA(α−1)b+KAαb = 0. (6.18)

Using the inductive hypothesis in equation (6.18), it follows that

AT (−1)α−1
(

cA(α−1)
)T

+KAαb = 0⇒ KAαb = (−1)α (cAα)T .

This completes the proof of the lemma. �

Lemma 6.9 is another auxiliary result that we need for the proof of Theorem 6.7. This
lemma shows that, the difference between an arbitrary solution of the KYP LMI (5.2) and a
rank-minimizing solution of the KYP LMI (5.2) (ones obtained using Theorem 5.7) satisfies a
certain Lyapunov inequality when restricted to a suitable ns-dimensional subspace.

Difference between the solutions of a KYP LMI satisfies a Lyapunov equation

Lemma 6.9. Consider a singularly passive SISO system of order ns. Let the corre-
sponding Hamiltonian pencil pair (E,H) be as defined in equation (5.11). Let KΛ be the
rank-minimizing solution of the system computed using Theorem 5.7 corresponding to a
Lambda-set Λ of det(sE−H). Let V1Λ be as defined in Theorem 5.7. Assume K to be
any other solution of the KYP LMI (5.2). Define ∆Λ :=V T

1Λ
(K−KΛ)V1Λ ∈Rns×ns . Then,

∆Λ satisfies the following Lyapunov inequality:

Γ
T
Λ∆Λ +∆ΛΓΛ 6 0.

Proof: Recall that the slow lossless trajectories of the system Σ are given by col(x̄s, ūs, ȳs),
where x̄s, ūs and ȳs are as defined in Lemma 6.1. Therefore, we have

d
dt

(
xT KΛx

)
|col(x̄s,ūs,ȳs) = 2ūsȳs for all t ∈ R. (6.19)
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From the dissipation inequality of a passive system (inequality (5.5)), it follows that for any
solution K of the singular KYP LMI (5.10), the slow lossless trajectories col(x̄s, ūs, ȳs) must
satisfy the following inequality

d
dt

(
xT Kx

)
|col(x̄s,ūs,ȳs) 6 2ūsȳs for all t ∈ R. (6.20)

Subtracting equation (6.19) from inequality (6.20) gives for all t ∈ R,

d
dt

(
xT (K−KΛ)x

)
|col(x̄s,ūs,ȳs) =

(
ẋT (K−KΛ)x+ xT (K−KΛ)ẋ

)
|col(x̄s,ūs,ȳs) 6 0. (6.21)

From Table 6.1, we have x̄s = V1ΛeΓΛtβ , where x0 = V1Λβ is the initial condition. Hence,
˙̄x =V1ΛeΓΛtΓΛβ . Therefore, for all t ∈ R, we have from inequality (6.21)

(V1ΛeΓΛt
ΓΛβ )T (K−KΛ)(V1ΛeΓΛt

β )+(V1ΛeΓΛt
β )T (K−KΛ)(V1ΛeΓΛt

ΓΛβ )6 0. (6.22)

Since inequality (6.22) is true for all t, evaluating it at t = 0, in particular, we get

β
T (ΓT

ΛV T
1Λ(K−KΛ)V1Λ +V T

1Λ(K−KΛ)V1ΛΓΛ)β = β
T (ΓT

Λ∆Λ +∆ΛΓΛ)β 6 0 (6.23)

Since inequality (6.23) is true for all β ∈ Rns , we infer that ΓT
Λ

∆Λ +∆ΛΓΛ 6 0. �

Using Lemma 6.8 and Lemma 6.9 we prove Theorem 6.7 next.
Proof of Theorem 6.7: First we prove that K > Kmin, i.e., K−Kmin > 0. Let the eigenvectors of
(E,H) corresponding to the Lambda-set Λmin be given by the columns of col(V1min,V2min,V3min),
where V1min,V2min ∈ Rn×ns and V3min ∈ Rns . Partition

[
VΛmin W

]
=:
[

X1min
X2min

]
, where W is as

defined in Theorem 5.7 and X1min,X2min ∈ Rn×n. Then, Kmin = X2minX−1
1min. Further, from

equation (5.29) we know that W can be partitioned as

W :=
[
b̂ Âb̂ · · · Ânf−1b̂

]
=

W1

W2

 ,
where W1 =

[
b Ab · · ·A(nf−1)b

]
and W2 =

[
cT · · · (−1)(nf−1)

(
cA(nf−1)

)T]
. Therefore,

X1min =
[
V1min W1

]
.

Note that since X1min is nonsingular, proving (K−Kmin)> 0 is equivalent to showing that
XT

1min(K−Kmin)X1min > 0. Hence, we evaluate XT
1min(K−Kmin)X1min next.

XT
1min(K−Kmin)X1min =

V T
1min(K−Kmin)V1min V T

1min(K−Kmin)W1

W T
1 (K−Kmin)V1min W T

1 (K−Kmin)W1

 (6.24)

From Lemma 6.8, we know that

K
[
b Ab · · · Anf−1b

]
=
[
cT −(cA)T · · · (−1)nf−1(cAnf−1)T

]
⇒ KW1 =W2.
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Since Kmin is a storage function of Σ, KminW1 =W2. Therefore, (K−Kmin)W1 = 0. Using this
in equation (6.24) we have

XT
1min(K−Kmin)X1min =

V T
1min(K−Kmin)V1min 0

0 0nf,nf

=

∆Λmin 0

0 0nf,nf

 , (6.25)

where ∆Λmin :=V T
1min(K−Kmin)V1min. Further, from Lemma 6.9, we know that ∆Λmin satisfies

the Lyapunov inequality: (ΓT
min∆Λmin +∆ΛminΓmin) 6 0. Since σ(Γmin) ( C−, by property

of Lyapunov operator, ∆Λmin > 0. Using this positive-semidefiniteness property of ∆Λmin in
equation (6.25), we infer XT

1min(K−Kmin)X1min > 0⇒ K−Kmin > 0.
Now we prove that K 6 Kmax, i.e., K−Kmax 6 0. Let an ns-dimensional eigenspace basis

corresponding to Lambda-set Λmax be given by the columns of col(V1max,V2max,V3max), where
V1max,V2max ∈ Rn×ns and V3max ∈ Rns . Partition

[
V1max W

]
=:
[

X1max
X2max

]
, where W is as defined

in Theorem 5.7 and X1max,X2max ∈Rn×n. Then, Kmax = X2maxX−1
1max. Thus, X1max =

[
V1max W1

]
.

Using the same line of reasoning as given for the proof K−Kmin> 0, proving K−Kmax6 0
is equivalent to proving that XT

1max(K−Kmax)X1max 6 0. Since KmaxW1 = W2, we have (K−
Kmax)W1 = 0. Therefore,

XT
1max(K−Kmax)X1max =

V T
1max(K−Kmax)V1max 0

0 0nf,nf

=

∆Λmax 0

0 0nf,nf

 , (6.26)

where ∆Λmax := V T
1max(K−Kmax)V1max. Further, from Lemma 6.9 we know that ΓT

max∆Λmax+

∆ΛmaxΓmax 6 0. Since σ(Γmax) ( C+, we infer that ∆Λmax 6 0⇒ XT
1max(K−Kmax)X1max 6 0.

Thus, K−Kmax 6 0. �

From the proof of Theorem 6.7, it follows that the rank-minimizing solutions of the KYP
LMI computed using the basis of the eigenspace corresponding to Lambda-sets that are ei-
ther subsets of C− or C+ induces the extremal storage functions of a singularly passive SISO
system. The storage function corresponding to the Lambda-set that is a subset of C− gives
the minimal storage function and the one corresponding to a subset of C+ gives the maximal
storage function.

Example 6.10. Recall for the system in Example 5.16, the minimal storage function corre-
sponds to the one computed using Lambda-set Λ1 and the maximal storage function corresponds
to that of Λ4. Therefore, for the system in Example 5.16, we have

Kmin =


40.75 44.20 11

44.20 48.10 12

11 12 3

 , Kmax =


345.25 44.20 11

44.20 139.90 12

11 12 3

 .
The initial part of the proof of Theorem 6.7, especially the application of Lemma 6.8,

reveals an interesting fact about the set of all solutions of the singular KYP LMI. This part of
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the proof shows that every solution K of the KYP LMI satisfies KW1 = W2. Let us denote by
M ∈Rn×n the matrix obtained by appending column vectors to the left of W1 to complete it into
a nonsingular matrix. That is, M :=

[
Y W1

]
, where Y ∈ Rn×ns such that M is nonsingular.

Clearly, the columns of M form a basis of the state-space Rn. Note that, under this basis, the
solutions of the KYP LMI with transformed system matrices would be related with the old
solutions through a congruence transformation: indeed, every solution of the transformed LMI
would be of the form MT KM, where K is a solution of the original LMI. However, writing out
this congruence transformation explicitly and using the fact that KW1 =W2 we get

MT KM =

Y T KY Y T KW1

W T
1 KY W T

1 KW1

=

Y T KY Y TW2

W T
2 Y W T

1 W2

 .
From Lemma 6.8 then it follows that the last nf rows and the last nf columns of MT KM, i.e.,
the submatrices W T

1 W2, W T
2 Y and Y TW2 of MT KM, remains the same for all solutions K = KT

of the KYP LMI. Therefore, under this basis, the difference between any pair of solutions K1

and K2 of the singular KYP LMI would be of the form

Y T (K1−K2)Y 0

0 0nf,nf

.

Example 6.11. Note that in Example 5.16, the difference of the rank-minimizing solutions of
the KYP LMI are as follows:

KΛ2−KΛ1 =


198.78 79.6 0

79.6 139.88 0

0 0 0

 , KΛ3−KΛ2 =


−93.06 0 0

0 28.05 0

0 0 0

 .
Similarly, the difference between the other rank-minimizing solutions obtained in Example 5.16
will also have a similar structure as the one shown above. Now, we demonstrate that this is true
for any arbitrary solution of the KYP LMI (5.2).

Let K be a solution of the KYP LMI (5.2) corresponding to the system in this example.

Define K :=


k11 k12 k13

k12 k22 k23

k13 k23 k33

. Since K is solution of the KYP LMI (5.2), it has to satisfy Kb−

cT = 0. Then, we must have

Kb− cT =


k11 k12 k13

k12 k22 k23

k13 k23 k33




0

0

1

−


11

12

3

= 0⇒


k13

k23

k33

=


11

12

3

 .

Thus, all solutions of the KYP LMI (5.2) must be of the form K =


k11 k12 11

k12 k22 12

11 12 3

. Therefore,
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it is evident that the last row and last column of the difference between any two solutions of the
KYP LMI (5.2), corresponding to the system in this example, must be zero.

Next we compute explicitly the lossless trajectories of the circuit that admits the transfer
function given in Example 5.16.

Example 6.12. An RC circuit corresponding to the impedance function G(s) as given in Exam-
ple 5.16 is as follows:

i

+

−

v

+ −vc1 + − + −

1F 1F 1F

1Ω
1
2Ω

1
3Ω

vc2 vc3

Figure 6.1: An RC network with an impedance function Z(s) = G(s) =
3s2 +12s+11

s3 +6s2 +11s+6
.

Slow lossless trajectories: Corresponding to the spectral zeros of the system in C−, i.e.,
−
√

4+
√

5 and −
√

4−
√

5, the eigenvectors of (E,H) are given by the columns of the matrix−0.34 0.85 −2.12 0.35 0.36 0.09 −0.13

−0.55 0.73 −0.97 −0.80 −0.82 −0.19 0.20

T

.

Therefore, the slow lossless trajectory col(x̄s, ūs, ȳs) of the RC circuit corresponding to an

initial condition x0s =


−0.34 −0.55

0.85 0.73

−2.12 −0.97


β1

β2

, where β1,β2 ∈ R is

x̄s =


−0.34 −0.55

0.85 0.73

−2.12 −0.97


e−
√

4+
√

5t 0

0 e−
√

4−
√

5t

β1

β2

=


−0.34e−

√
4+
√

5tβ1−0.55e−
√

4−
√

5tβ2

0.85e−
√

4+
√

5tβ1 +0.73e−
√

4−
√

5tβ2

−2.12e−
√

4+
√

5tβ1−0.97e−
√

4−
√

5tβ2

 ,

ūs =
[
−0.13 0.20

]e−
√

4+
√

5t 0

0 e−
√

4−
√

5t

β1

β2

=−0.31e−
√

4+
√

5t
β1 +0.21e−

√
4−
√

5t
β2, and

ȳs = cx̄s = 0.09e−
√

4+
√

5t
β1−0.19e−

√
4−
√

5t
β2.

These slow lossless trajectories corresponds to a Lambda-set Λ of det(sE−H) such that Λ (
C−. Recall that the initial condition x0s here is from the space of regular initial condition and
hence, the lossless trajectories are exponential in nature. Next we look at lossless trajectories
when the initial condition of the system is from the space of irregular initial conditions.
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Fast lossless trajectories: Let the initial condition of the system be x0f =


0

0

1

α , where

α ∈ R. Then, using Table 6.1 the fast lossless trajectory (x̄f, ūf, ȳf) of the RC circuit is

x̄f = 0n,1, ūf =−αδ , and ȳf = 0.

Note that in this case d
dt (x

T Kx)|col(x̄f,ūf,ȳf) = 0 and 2ūfȳf = 0. Hence, the rate of change of
stored energy is equal to the power supplied; confirms that (x̄f, ūf, ȳf) is a lossless trajectory.

Thus, corresponding to an initial condition x0 = x0s + x0f =


−0.34 −0.55 0

0.85 0.73 0

−2.12 −0.97 1




β1

β2

α

, the

lossless trajectory of the system is given by

x̄ = x̄s+ x̄f =


−0.34e−

√
4+
√

5tβ1−0.55e−
√

4−
√

5tβ2

0.85e−
√

4+
√

5tβ1 +0.73e−
√

4−
√

5tβ2

−2.12e−
√

4+
√

5tβ1−0.97e−
√

4−
√

5tβ2

 ,
ū = ūs+ ūf =−0.31e−

√
4+
√

5t
β1 +0.21e−

√
4−
√

5t
β2−αδ ,

ȳ = ȳs+ ȳf = 0.09e−
√

4+
√

5t
β1−0.19e−

√
4−
√

5t
β2.

The presence of δ in ū indicates that with the capacitors initially charged to x0, if one discharges
the capacitors very fast, i.e. in the limit of a sequence of exponential decays: instantaneously1,
then it is possible to extract the capacitors’ entire stored energy through the port. On the other
hand, if α 6= 0 then nonzero dissipation at the resistor R is inevitable if one does not discharge
instantaneously.

Note that although Example 6.12 do not present a scenario where we encounter products
of δ and its derivatives while evaluating stored energy xT Kx or power supply 2uy, there can be
scenarios when we encounter such products. The next example demonstrates this.

Example 6.13. Consider a singularly passive SISO system with a transfer function G(s) =
s2 +qs+1

s3 +qs2 +ds+1
such that q,d ∈ R+ \ 0 and d = 1+

1
q

. For example, let q = 2 and d =
3
2

.

Then, an i/s/o representation of the system is given by

d
dt

x =


0 1 0

0 0 1

−1 −1.5 −2

x+


0

0

1

u, y =
[
1 2 1

]
x

An RLC circuit corresponding to G(s) as an impedance function is given in Figure 6.2.
1Instantaneous discharge of capacitor C (by a controller at the port, which is, in this case ‘short’) can be viewed

as a limit of a sequence of exponentially decaying extractions, with increasing magnitudes of decay rates.
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i

-

+

-

+

-

2H

v
+

1Ω1F
1
2F

Figure 6.2: A RLC network with impedance transfer function G(s) =
s2 +2s+1

s3 +2s2 +1.5s+1

Note that nf= 3 here. Hence, using Theorem 5.7, W1 =


0 0 1

0 1 −2

1 −2 2.5

. Since n= nf, the RLC

circuit in Figure 6.2 do not admit any slow lossless trajectories. Therefore, corresponding to an

initial condition x0 =


0 0 1

0 1 −2

1 −2 2.5




α0

α1

α2

= α0b+α1Ab+α2A2b, the lossless trajectory of

this system from Table 6.1 is given by

x̄ = 0−α1bδ −α2

(
bδ̇ +Abδ

)
=−α1


0

0

1

δ −α2


0

0

1

 δ̇ −α2


0

1

−2

δ =−


0

α2δ

(α1−2α2)δ +α2δ̇

 ,
ū =−α0δ −α1δ

(1)−α2δ
(2), and ȳ = cx̄ = α1δ +α2δ̇ .

It is evident here that power supplied 2ūȳ involves product of δ and its derivatives.

Thus, it is clear that there are many scenarios when we encounter products of δ and its
derivatives while evaluating the power supply 2uy or the stored energy xT Kx. Multiplication of
δ and its derivatives has been defined in [Fuc84], [Tre09]. Such multiplications are defined in
the literature using Fuchssteiner multiplication. However, physical interpretation of the prod-
ucts of δ and its derivatives is an open question to the best of our knowledge. We do not dwell
into the physical interpretation of such products here. This is a matter of future research.

In the next section we show that similar to a singular LQR problem, there exist state-
feedback controllers for a singularly passive SISO system, as well, that confine the set of tra-
jectories of such a system to the lossless ones.

6.4 Controllers to confine the set of system trajectories to its
lossless trajectories

In this section we design state-feedback controllers that confine the set of trajectories of a sin-
gularly passive SISO system to its lossless trajectories. Due to the similarity in the structure
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of the lossless trajectories of a singularly passive SISO system (see Table 6.1) and the optimal
trajectories of a singular LQR problem (see Lemma 3.6 and Lemma 3.7) the design of the con-
trollers is the same as described in Section 3.4. Therefore, we claim that a PD state-feedback
control law of the form x = Fpx+Fd d

dt x confines the set of trajectories of a singularly passive
SISO system to its lossless trajectories.

Using the fact that X1Λ is nonsingular (Theorem 5.7), we define Fp, Fd ∈ R1×n as follows:

Fp :=
[
V3Λ f0 f1 · · · fnf−1

]
X−1

1Λ
, (6.27)

Fd :=
[
01,ns 1 − f0 · · · − fnf−2

]
X−1

1Λ
, (6.28)

where V3Λ is as defined in Theorem 5.7 and fi ∈ R for i ∈ {0,1, . . . ,nf− 1}. The closed loop
system obtained on application of u = Fpx+Fd d

dt x to Σ is as follows:

Ec
d
dt

x = Acx and y = cx, where (In−bFd) =: Ec,(A+bFp) =: Ac. (6.29)

We use the symbol Σlossless to represent the closed loop system in equation (6.29). Following
the same line of reasoning as in Section 3.4 of Chapter 3, we therefore have the following
results.

Existence of Fp and Fd such that the matrix pencil (sEc−Ac) is regular

Lemma 6.14. Let Fp and Fd be as defined in equation (6.27) and equation (6.28), re-
spectively. Then, there exist f0,. . . , fnf−1 ∈ R such that det(sEc−Ac) 6=0, where Ec, Ac

are as defined in equation(6.29).

Proof: The proof is exactly the same as that of Lemma 3.10. �

Trajectories of the closed loop system Σlossless

Theorem 6.15. Let Σlossless be the system defined in equation (6.29), where Fp and
Fd are as defined in equations (6.27) and (6.28), respectively, with det(sEc−Ac) 6= 0.
Consider an arbitrary initial condition of the system Σlossless given as x0 =: V1Λβ +

W1α , β ∈ Rns , α ∈ Rnf , where V1Λ and W1 are as defined in Theorem 5.7 and equation
(5.29), respectively. Let x̄ be as defined in Theorem 6.6. Then, the unique trajectory in
Σlossless corresponding to x0 is x̄.

Proof: The proof is exactly the same as that of Theorem 3.11. �
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Trajectories of the closed loop system Σlossless are the lossless trajectories

Theorem 6.16. Consider a singularly passive system Σ of order ns. Assume Fp ∈ R1×n

and Fd ∈ R1×n to be as defined in equation (6.27) and equation (6.28), respectively with
det

(
s(In−bFd)−(A+bFp)

)
6=0. Let the closed loop system obtained on application of

the PD state-feedback law u=Fpx+Fd d
dt x to Σ be as defined in equation (6.29). Then, for

an arbitrary initial condition x0, the corresponding trajectory of the closed loop system
Σlossless is a lossless trajectory in the sense of Definition 6.3.

Proof: The proof of this theorem directly follows from Theorem 6.6 and Theorem 6.15. �

Slow and fast subspaces of the closed-loop system Σlossless

Corollary 6.17. Consider the system Σlossless with the state-space equation of the form
given in equation (6.29), where Fp and Fd are as defined in Theorem 6.16. Define V :=
imgV1Λ and W := imgW1 with V1Λ and W1 as defined in Theorem 5.7. Then, V and W

are the slow subspace and fast subspace of the system Σlossless, respectively.

Proof: The proof is exactly the same as that of Corollary 3.13. �

From Corollary 6.17 it is evident that the slow and fast subspace of the system Σlossless is
the same as the space of regular and irregular initial condition of a singularly passive system,
respectively. We illustrate the design of such state-feedback matrices for the RC circuit in Figure
6.1 next.

Example 6.18. Corresponding to the Lambda-set Λmin =
{
−
√

4+
√

5,−
√

4−
√

5
}

, recall

that V3Λ =
[
−0.13 0.20

]
and X1Λ =


−0.34 −0.55 0

0.85 0.73 0

−2.12 −0.97 1

. Therefore, choosing f0 = 0 in

equation (6.27) and equation (6.28), we have

Fp =
[
−0.13 0.21 0

]
−0.34 −0.55 0

0.85 0.73 0

−2.12 −0.97 1


−1

=
[
−1.21 −0.64 0

]
,

Fd =
[
0 0 1

]
−0.34 −0.55 0

0.85 0.73 0

−2.12 −0.97 1


−1

=
[
3.32 3.83 1

]
.
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The closed-loop system obtained on application of u = Fpx+ d
dt Fd to Σ is given by

1 0 0

0 1 0

−3.32 −3.83 0

 d
dt

x =


0 1 0

0 0 1

−7.21 −11.64 −6

x (6.30)

Evidently, the closed-loop system in equation (6.30) is a singular descriptor system. Further,
the trajectories of this system are the lossless trajectories of Σ. Note that for the closed-loop
system in equation (6.30), we have det(sEc−Ac) = 7.21+ 8.32s+ 2.17s2 and as expected
roots(sEc−Ac) =

{
−
√

4+
√

5,−
√

4−
√

5
}
= Λmin.

Similarly, corresponding to the Lambda-set Λmax=
{√

4+
√

5,
√

4−
√

5
}

, we have V3Λ =

[
40.04 −17.97

]
and X1Λ =


0.46 −0.54 0

1.16 −0.71 0

2.89 −0.95 1

. On choosing f0 = 0 in equation (6.27) and

equation (6.28), we have the following matrices:

Fp =
[
−26.59 45.27 0

]
, Fd =

[
3.32 −3.83 1

]
.

The corresponding closed-loop therefore is
1 0 0

0 1 0

−3.32 3.83 0

 d
dt

x =


0 1 0

0 0 1

−32.59 34.27 −6

x (6.31)

The trajectories of corresponding to this system are lossless, as well. Note that for the closed-
loop system in equation (6.31), we have det(sEc−Ac) = 32.59− 37.59s+ 9.83s2 and as ex-
pected roots(sEc−Ac) =

{√
4+
√

5,
√

4−
√

5
}
= Λmax.

Although the set of trajectories of a singularly passive SISO system can always be con-
fined to its lossless trajectories using the PD controllers proposed in Theorem 6.16, not all
lossless trajectories can be designated as optimal-charging and optimal-discharging trajecto-
ries. Recall that in Example 6.13 the lossless trajectories obtained involved multiplication of
δ and its derivatives. Hence, in such a case the integrals in equation (6.1) and equation (6.2)
are no longer well-defined. Since such a scenario involving products of δ and its derivatives
arises when the initial conditions are not from the space of regular initial conditions, we need to
consider initial conditions only from the space of regular initial conditions when we deal with
optimal-charging and optimal-discharging of a singularly passive SISO system. Hence, if we
are interested in designing controllers to confine the set of trajectories of a singularly passive
SISO system to its optimal-charging and optimal-discharging trajectories, then we can do so
using a static state-feedback control law. We present this as a result next.
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Controllers for optimal-charging/optimal-discharging

Theorem 6.19. Consider a singularly passive system Σ of order ns with the correspond-
ing Hamiltonian matrix pair (E,H) as defined in equation (5.11). Assume Fp ∈ R1×n

to be as defined in equation (6.27), where V3Λ corresponds to a Lambda-set Λ of
det(sE−H). Suppose the closed-loop system obtained on application of the static state-
feedback law u = Fpx be Σopt. Let the initial/final condition of the system be from the
subspace x0 ∈ imgV1Λ. Then, the following statements are true

(1) If Λ ( C−, then trajectories of Σopt are trajectories of optimal-discharging when
the system is brought to rest from x0.

(2) If Λ ( C+, then trajectories of Σopt are trajectories of optimal-charging when the
system’s states changes from zero to x0.

Proof: Application of the state-feedback u = Fpx to the system Σ results in the closed-loop
system d

dt x = (A+ bFp)x. The state-trajectories of the system therefore are x(t) = e(A+bFp)tx0,
where x0 :=V1Λβ for any β ∈Rns×1. From equation (5.12) we know that AV1Λ+bV3Λ =V1ΛΓ,
where σ(Γ) = Λ. Using this and the fact that FpV1Λ =V3Λ, the input, output and state-trajectory
of the closed-loop system corresponding to an initial/final condition x0 =V1Λβ is as follows

x(t) = e(A+bFp)tV1Λβ =

(
In+ t(A+bFp)+

t2

2!
(A+bFp)2 + · · ·

)
V1Λβ

=

(
In+ t(A+bFp)V1Λ +

t2

2!
(A+bFp)2V1Λ + · · ·

)
β

=

(
In+ tV1ΛΓ+

t2

2!
V1ΛΓ

2 + · · ·
)

β =V1ΛeΓt
β , (6.32)

u(t) = Fpx(t) = FpV1ΛeΓt
β =V3ΛeΓt

β , (6.33)

y(t) = cx(t) = cV1ΛeΓt
β . (6.34)

Comparing equations (6.32), (6.33) and (6.34) with Table 6.1 it is evident that the trajectories of
Σopt corresponding to initial/final condition x0 ∈ imgV1Λ are lossless, i.e, x(t) = x̄s,u(t) = ūs,
and y(t) = ȳs. Now we prove each statement of this theorem one-by-one.
(1): Let Kmin be the minimal rank-minimizing solution of the KYP LMI (5.2). Correspond-
ing to a Lambda-set Λ ( C−, the lossless trajectories col(x̄s, ūs, ȳs) must therefore satisfy
d
dt (x̄

T
s Kminx̄s) = 2ūsȳs by Definition 6.3. Integrating both sides of this equation, we have∫
∞

0

d
dt
(x̄T

s Kminx̄s)dt =
∫

∞

0
(2ūsȳs)dt⇒ (x̄T

s Kminx̄s)|t=∞− (x̄T
s Kminx̄s)|t=0 =

∫
∞

0
(2ūsȳs)dt

(6.35)

Since σ(Γ) = Λ (C−, we must have

(x̄T
s Kminx̄s)|t=∞ = (β T eΓT tV1Λ

T KminV1ΛeΓt
β )|t=∞ = 0. (6.36)
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Further, we also have

(x̄T
s Kminx̄s)|t=0 = (β T eΓT tV1Λ

T KminV1ΛeΓt
β )|t=0 = β

TV1Λ
T KminV1Λβ = xT

0 Kminx0. (6.37)

Therefore, using equation (6.36) and equation (6.37) in equation (6.35), we get∫
∞

0
(2ūsȳs)dt =−(xT

0 Kminx0)⇒ xT
0 Kminx0 =−

∫
∞

0
(2ūsȳs)dt. (6.38)

Comparing equation (6.38) with equation (6.2) it is evident that col(ū, ȳ) are the trajectories of
optimal-discharging.
(2): Let Kmax be the maximal rank-minimizing solution of the KYP LMI (5.2). Correspond-
ing to a Lambda-set Λ ( C+, the lossless trajectories col(x̄s, ūs, ȳs) must therefore satisfy
d
dt (x̄

T
s Kmaxx̄s) = 2ūsȳs by Definition 6.3. Similar to the proof of Statement (1) of this theorem,

we therefore have the following equation∫ 0

−∞

d
dt
(x̄T

s Kmaxx̄s)dt =
∫ 0

−∞

(2ūsȳs)dt⇒ (x̄T
s Kmaxx̄s)|t=0− (x̄T

s Kmaxx̄s)|t=−∞ =

∫ 0

−∞

(2ūsȳs)dt

(6.39)

Since σ(Γ) = Λ (C+, we must have

(x̄T
s Kmaxx̄s)|t=−∞ = (β T eΓT tV1Λ

T KmaxV1ΛeΓt
β )|t=−∞ = 0. (6.40)

Further, we also have

(x̄T
s Kmaxx̄s)|t=0 = (β T eΓT tV1Λ

T KmaxV1ΛeΓt
β )|t=0 = β

TV1Λ
T KmaxV1Λβ = xT

0 Kmaxx0. (6.41)

Thus, using equation (6.40) and equation (6.41) in equation (6.39), we have

xT
0 Kmaxx0 =

∫
∞

0
(2ūsȳs)dt. (6.42)

Comparing equation (6.42) with equation (6.1) it is evident that col(ū, ȳ) are the trajectories of
optimal-charging. �

From Theorem 6.19 it is clear that the closed-loop system obtained on application of the static
state-feedback u = Fpx have trajectories of optimal-charging/optimal-discharging when the ini-
tial/final condition of a singularly passive SISO system is from the space of regular initial
conditions. The space of regular initial condition is of dimension ns. Therefore, for singu-
larly passive systems there always exist a n−ns = nf dimensional subspace complementary to
the space of regular initial conditions where the system do not admit trajectories of optimal-
charging/optimal-discharging. We call such complementary subspaces the space of inadmissi-
ble initial conditions. The subspace imgW1 (Rn is one such subspace.

Further, if we compute V3Λ and X1Λ corresponding to a Lambda-set Λmin of det(sE−H)

such that Λmin ( C− and design Fp using equation (6.27), then the closed-loop system Σopt

obtained on application of the static state-feedback u = Fpx to a singularly passive SISO system
Σ admits the trajectories of optimal-discharging. Similarly, for the case when the Lambda-
set Λmax is such that Λ ( C+, the closed-loop system Σopt admits the trajectories of optimal-
charging. We illustrate this with the system in Example 6.12 next.
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Example 6.20. Optimal-discharging: The state-feedback matrix, corresponding to Lambda-set
Λmin, with f0 = 0 is given by Fp =

[
−1.21 −0.64 0

]
(see Example 6.18). The closed-loop

system obtained on application of u = Fpx is given by

d
dt

x =


0 1 0

0 0 1

−7.21 −11.64 −6

x. (6.43)

If the initial condition of the system is x0s=


−0.34 −0.55

0.85 0.73

−2.12 −0.97


β1

β2

∈ imgVΛmin
, where β1,β2 ∈

R. Then, the state-trajectory of the system in equation (6.43) is

x(t) =


1 1 1

−1.33 −2.17 −2.50

1.76 4.73 6.24




e−
√

4−
√

5t

e−2.17t

e−
√

4+
√

5t




0 −0.55

0 0

−0.34 0


β1

β2



=


−0.34e−

√
4+
√

5t −0.55e−
√

4−
√

5t

0.85e−
√

4+
√

5t +0.73e−
√

4−
√

5t

−2.12e−
√

4+
√

5t −0.97e−
√

4−
√

5t

 . (This is a slow lossless trajectory: see Example 6.12)

This is the optimal-discharging trajectory when the system Σ is discharged from initial condition
x0s to zero. Figure 6.3 show the state-trajectories and the percentage of energy extraction
corresponding to the controller Fp when the initial conditions of the closed loop system in
equation (6.43) are from the space of admissible and inadmissible initial conditions.

Optimal-charging: The state-feedback matrix, corresponding to Lambda-set Λmax, with
f0 = 0 is given by Fp =

[
−26.59 45.27 0

]
(see Example 6.18). The closed-loop system

obtained on application of u = Fpx is given by

d
dt

x =


0 1 0

0 0 1

−32.59 34.27 −6

x. (6.44)

Corresponding to a final condition x0s =


0.46 −0.54

1.16 −0.71

2.89 −0.95


β1

β2

 ∈ imgVΛmax
, the trajectory of

the system in equation (6.44) is given by

x̄ =


0.46e

√
4+
√

5tβ1−0.54e
√

4−
√

5tβ2

1.16e
√

4+
√

5tβ1−0.71e
√

4−
√

5tβ2

2.89e
√

4+
√

5tβ1−0.95e
√

4−
√

5tβ2

 .



154 Chapter 6. Lossless trajectories and extremal storage functions of passive systems

0 2 4 6
−6

−4

−2

0

2

4

Energy extracted = 0.205
Available storage = 0.205

Energy lost = 0%

Time

St
at

es

(a) x0 ∈ imgV1Λ: β1 = 1,β2 = 3
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Figure 6.3: Optimal discharging trajectories of the system with Fp corresponding to (a) an
admissible initial condition and (b) an inadmissible initial condition.

This is the optimal-charging state-trajectory when the system Σ goes from rest to the final state.

Figure 6.3(a) shows the optimal discharging state-trajectories of the system corresponding
to an admissible initial condition (β1 = 1,β2 = 3). Note that in such a case the entire available
stored energy can be extracted out. On the other hand, when initial conditions are inadmissible,
e.g. in case of Figure 6.3(b), 91.97% of the stored energy is lost.

6.5 Summary

In this chapter, we showed that the storage functions of a singularly passive SISO system admit
extremal storage functions (Theorem 6.7) and these extremal storage functions can be computed
using a suitable choice of Lambda-set in Algorithm 5.16. To prove the existence of such ex-
tremal solutions we characterized the lossless trajectories of a singularly passive SISO system
(Table 6.1). We showed that if the initial conditions of the system are from the space of regular
initial conditions, then the lossless trajectories are exponential in nature (Lemma 6.1). On the
other hand, the lossless trajectories are impulsive if the initial conditions are from the space of
irregular initial condition (Lemma 6.2). Further, we also presented a method, similar to that in
Chapter 3, to design a PD state-feedback control law that confines the set of trajectories of a
singularly passive SISO system to its lossless trajectories (Theorem 6.16). Thus, in this chapter
we showed that in case of a regularly or singularly passive system the rank-minimizing solu-
tions of the corresponding KYP LMI can be used to confine the set of system trajectories to its
lossless trajectories.

In the next section, we look into a special but familiar class of passive systems for which
the rate of change of stored energy is always equal to the power supplied to the system. These
are systems that do not admit any dissipation in energy and hence are aptly called lossless
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systems. In other words, all the trajectories of these systems are lossless. Hence, in terms
of Definition 6.3, there must exist a solution of the KYP LMI for a lossless system such that
equation (6.3) is satisfied for all the trajectories the system. However such a solution of the KYP
LMI cannot be computed using Theorem 5.7, since a lossless system admits spectral zeros on
the imaginary axis. Therefore, in the next section, we present different methods to compute
the storage function, i.e. solution of the KYP LMI corresponding to a lossless system. These
methods reveal interesting properties about lossless systems and their bounded-real counterparts
allpass systems.





Chapter 7

Storage functions of lossless systems

7.1 Introduction

Lossless systems are a class of passive systems that is well-studied in the literature [VD89],
[PW02], [RR08]. Traditionally, lossless systems have played a crucial role in classical elec-
trical network theory. Examples of lossless electrical networks include networks composed of
inductors, capacitors, transformers, and gyrators but no resistive elements. Such systems also
find applications in digital signal processing [VD89], induction heating [RLC17], communi-
cation systems, etc. A typical example of a lossless system is the resonant circuit shown in
Figure 7.1. The LC circuit in Figure 7.1 oscillates at its natural resonant frequency and stores

−

+

L Cv

Figure 7.1: A resonant ciruit

energy. The stored energy in such a circuit oscillates back
and forth between the capacitor and the inductor. Since
such systems do not dissipate this energy in ideal conditions,
such systems are called lossless. Hence, lossless systems are
those passive systems for which the energy extracted from
the system equals the energy supplied to the system. In other
words, these are systems that do not dissipate energy. There-
fore, lossless systems satisfy the dissipation inequality (5.5)
with equality. Thus, a passive system with a minimal i/s/o representation

d
dt

x = Ax+Bu, y =Cx+Du, (7.1)

where A ∈ Rn×n,B,CT ∈ Rn×p and D ∈ Rp×p, is lossless if and only if there exists a matrix
K = KT ∈Rn×n such that for every col(x,u,y) ∈ C∞(R,Rn+2p) that satisfies equation (7.1), we
must have (see [Wil72])

d
dt

(
xT Kx

)
= 2uT y for all t ∈ R. (7.2)

Similar to regularly and singularly passive systems, it can be shown that K must satisfy the KYP
LMI, albeit with equality. Recall that xT Kx (or K) is called the storage function of the system.
Our primary objective in this chapter is to compute storage functions of lossless systems.

157
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From studies in classical network analysis it is well-known that for a lossless system with
a transfer function G(s) ∈ R(s)p×p, the corresponding Popov function is a zero function, i.e.,
G(s)+G(−s)T = 0 (see [AV06, Theorem 2.7.4]). It therefore follows that for a lossless system
the feed-through term D in equation (7.1) must satisfy D+DT = 0. Recall that D+DT is
the feed-through regularity condition for the KYP LMI. This indicates that lossless systems
do not admit an ARE. Thus, a natural question arises: can the method to compute storage
function, proposed in Chapter 5, for singularly passive systems applied to lossless systems?
Since G(s)+G(−s)T = 0 for lossless systems, the entire C-plane are the spectral zeros for such
systems. This implies that lossless systems admit spectral zeros on the imaginary axis, as well.
Therefore, at first glance it seems that the method to compute storage functions for singularly
passive SISO systems (Theorem 5.7 and Algorithm 5.16) cannot be used to compute the storage
functions of lossless systems. However, in Section 7.3 we show that Algorithm 5.16 can indeed
be used to compute the storage functions of lossless systems, as well. Apart from Algorithm
5.16, we present a few other methods to compute the storage functions of lossless systems.
These methods are developed using different salient features of a lossless system.

It is well-known that synthesis of lossless transfer functions result in LC networks. Tra-
ditionally, LC realizations of lossless transfer functions are non-unique; Foster 1 & 2, Cauer
1 & 2 and their combinations, for example. The values of the capacitances and inductances
would be highly varied across these realizations, due to which, for a given amount of stored
energy, the capacitor-voltages and inductor-currents would be different across the realizations.
Further, for a given lossless transfer function there are many state-space realizations that need
not correspond to an LC realization, this also adds to the non-uniqueness in the values of states
for a given stored energy. In spite of this non-uniqueness, it is known that the energy stored,
when expressed in terms of the external variables (port-variables) and their derivatives, is ex-
actly unique and is independent of both the LC realization and the state-space realization. In
other words, lossless systems admit unique storage functions (xT Kx). For the design of an al-
gorithm to compute storage function, this property can be exploited in the sense that the LC
realization or state-space realization can be chosen in a form so that new methods (possibly
with better numerical/flop-count properties) to compute the stored energy are revealed by the
chosen realization. Apart from a method based on Algorithm 5.16, this chapter proposes four
different approaches to characterize the stored energy; each approach unfolds new results and
algorithms to compute the storage function. The four concepts on which the main results of this
chapter are based on are as follows:

1. States and costates of a lossless system. (Section 7.4)

2. Partial fraction method: Foster/Cauer and their combinations, (Section 7.5 and Section 7.6)

3. Bezoutian of two polynomials using Euclidean long division, Pseudo-inverse/Left-inverse,
and Two dimensional discrete Fourier transform. (Section 7.7 and Section 7.8)

4. Controllability/Observability Gramians. (Section 7.9)
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In order to develop the results in this chapter we need a few preliminaries that we present next.

7.2 Preliminaries

Note that in terms of the solution of the KYP LMI, it is evident that a passive system with a
minimal i/s/o representation as in equation (7.1) is lossless if and only if there exists K = KT ∈
Rn×n such that the following linear matrix equality (LME) is satisfied:AT K +KA KB−CT

BT K−C 0

= 0⇒

AT K +KA = 0

KB−CT = 0.
(7.3)

Hence, our primary objective is to find algorithms to compute K that satisfies equation (7.3).

7.2.1 Minimal Polynomial Basis

The degree of a polynomial vector r(s) ∈ R[s]n is defined as the maximum degree amongst the
n components of the vector. Degree of the zero polynomial and the zero vector R[s]n is defined
as −∞.

Consider the polynomial matrix R(s) ∈ R[s]n×m of normal rank n. Let the polynomial
matrix P(s) ∈ R[s]m×(n−m) be such that R(s)P(s) = 0 and nrank(P(s)) = n−m. Then, the
columns of P(s) are said to form a basis of the nullspace of R(s). Suppose the columns
of P(s) are {p1(s), p2(s), . . . , pm−n(s)} ordered with degrees d1 6 d2 6 . . . 6 dm−n. The set
{p1(s), p2(s), . . . , pm−n(s)} is said to be a minimal polynomial basis of R(s) if every other
nullspace basis {q1(s),q2(s), . . . ,qm−n(s)} with degree c1 6 c2 6 . . . 6 cm−n is such that di 6

ci, for i = 1,2, . . . ,m− n. The degrees of the vectors of minimal polynomial basis of R(s)
are called the Forney invariant minimal indices or Kronecker indices (more details in [GF75],
[Kai80, Section 6.5.4]).

7.2.2 Hamiltonian systems corresponding to MIMO lossless systems

Corresponding to a MIMO lossless system with a minimal i/s/o representation of the form given
in equation (7.1), the Hamiltonian system is given by:

In 0 0

0 In 0

0 0 0p


︸ ︷︷ ︸

E

d
dt


x

z

u

=


A 0 B

0 −AT CT

C −BT 0


︸ ︷︷ ︸

H


x

z

u

 . (7.4)

Recall that the components of x and z are the states and costates of the system, respectively.
Analogous to Chapter 5, we call the matrix pair (E,H), the Hamiltonian matrix pair and the
system in equation (7.4) is called a Hamiltonian system. The matrix pencil (sE−H) is called
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the Hamiltonian pencil. We use the symbol ΣHam to represent such a system. The output-nulling
representation of the system ΣHam is

d
dt

x

z

= Â

x

z

+ B̂u, 0 = Ĉ

x

z

 , (7.5)

where Â :=
[

A 0
0 −AT

]
, B̂ :=

[
B

CT

]
and Ĉ := [C −BT ]. It is important to note that for lossless

systems the Hamiltonian pencil (sE−H) is singular. We prove this in the next lemma.

Lossless systems admit a singular Hamiltonian pencil

Lemma 7.1. Consider a lossless system Σ with a minimal i/s/o representation as given
in equation (7.1). Let the corresponding Hamiltonian matrix pair be (E,H) as defined in
equation (7.4). Then, det(sE−H) = 0.

Proof: On evaluating det(sE−H) using Schur-complement and using the fact that for lossless
systems G(s)+G(−s)T = 0, it follows that

det(sE−H) = det


sIn−A 0 −B

0 sIn+AT −CT

−C BT 0



= det

[−C BT
]sIn−A 0

0 sIn+AT

−1 −B

−CT


×det(sIn−A)×det(sIn+AT )

= det
{
−C(sIn−A)−1B+BT (sIn+AT )−1CT}×det(sIn−A)×det(sIn+AT )

= det
{
−G(s)−G(−s)T}×det(sIn−A)×det(sIn+AT ) = 0.

This completes the proof of the lemma. �

7.2.3 Quotient ring and Gröbner basis

Consider a commutative ring R (with multiplicative identity 1) and an ideal I ⊆R. We define
an equivalence relation over R such that two elements p1, p2 ∈R are related if p1− p2 ∈ I. The
set of all equivalence classes originating from this equivalence relation is denoted by R/I. It
is well-known that the set R/I has a ring structure with addition and multiplication operations
inherited from R. This ring is known in the literature as the quotient ring. The equivalence
class of an element p ∈R is represented as [p]. In this chapter, we deal with the two-variable
polynomial ring C[x1,x2]. Let I⊆C[x1,x2] be the ideal generated by a given set of polynomials
{ f1, f2, . . . , ft} ∈ C[x1,x2]. Given a polynomial p ∈ C[x1,x2] we want to uniquely represent it
in the quotient ring C[x1,x2]/I. This is a standard problem in commutative algebra and Gröbner
basis helps here: see [CLO92, Chapter 2].
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Given an ideal I⊆ C[x1,x2, . . . ,xn], a Gröbner basis is a special set of polynomials, which
generate I and possesses useful properties for computational analysis. The first step in finding
a Gröbner basis of an ideal is to fix the ordering of the monomials in the polynomial ring. Such
an ordering is called term ordering1. In this chapter, we use lexicographic term ordering on the
set of monomials of C[x,y]. Note that, although Gröbner basis is not always unique, however,
for this chapter and the application dealt with here the Gröbner basis of the ideal is “reduced”
and hence unique. For example, with respect to lexicographic ordering, the reduced and unique
Gröbner basis for the ideal 〈xN− 1,yN− 1〉 ( C[x,y] is given by {xN− 1,yN− 1}: for details
on reduced Gröbner basis refer to [CLO92, Chapter 2]. For the rest of this chapter, by “the
Gröbner basis” we mean the reduced and unique Gröbner basis. Next we state a property of
Gröbner basis that we use in this chapter.

Proposition 7.2. [CLO92, Section 2.6] Let G = {g1,g2, . . . ,gt} be the Gröbner basis for an
ideal I⊆C[x1,x2, . . . ,xn] with respect to a term ordering and let p∈C[x1,x2, . . . ,xn]. Then there
exist polynomials q1,q2, . . . ,qt,r ∈ C[x1,x2, . . . ,xn] such that p = q1g1 + q2g2 + · · ·+ qtgt+ r
where r is the remainder with respect to G and leading2 monomial (LM) of r≺ LM(gi) for every
i = 1,2, . . . ,t. Moreover, r is unique and independent of the order of division.

Thus, given an ideal I∈C[x1,x2, . . . ,xn] and given the Gröbner basis, G = {g1,g2, . . . ,gt},
the map Π : C[x1,x2, . . . ,xn] → C[x1,x2, . . . ,xn]/I maps any element p ∈ C[x1,x2, . . . ,xn]
to its unique remainder r obtained by multivariate division of p by G (irrespective of the
order of division). The equivalence class [p] can therefore be represented by the remainder
r ∈ C[x1,x2, · · · ,xn]. It is important to note that Π is a ring homomorphism.

A well-known result that is used in Section 7.7.3 is the Hilbert’s Nullstellensatz. We
present this result as a proposition for ease of reference. Before we present the proposition we
need to define the radical of an ideal first.

Definition 7.3. [CLO92, Definition 2] The radical of J, denoted by
√
J, is the set {g∈F[x1, . . . ,x2] :

gm ∈ J for some m> 1}. Further, an ideal J is said to be a radical ideal if
√
J= J.

Next we present Hilbert’s Nullstellensatz as a proposition.

Proposition 7.4. [CLO92, Theorem 2] If F is an algebraically closed field and J is an ideal in
F[x1,x2, . . . ,xn], then I (V(J)) =

√
J.

An ideal J ( C[x1,x2, . . . ,xn] is a zero-dimensional ideal if V(J) ( Cn is a finite set: see
[CLO92, Chapter 2, Finiteness Theorem] for details.

1A term ordering on C[x1,x2, . . . ,xn] is any relation on the set of monomials xα ,α ∈Z n
>0 satisfying:

(i) � is a total ordering on Z n
>0. (ii) If α � β and γ ∈Z n

>0, then α + γ � β + γ . (iii) � is a well-ordering on Z n
>0

i.e. every nonempty subset of Z n
>0 has a smallest element under �.

There are different types of term ordering viz. lexicographic, graded lexicographic, graded reverse lexico-
graphic, etc. : see [CLO92, Chapter 2] for a detailed exposition.

2Let f =
∑

α
aα xα ∈C[x1,x2, . . . ,xn] and let� be a term ordering. Then the leading monomial of f is LM( f ) :=

xd( f ) (with coefficient 1), where the multidegree d( f ) of f is defined as d( f ) := max(α ∈ Z n
�0 : aα 6= 0): see

[CLO92, Chapter 2].
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7.2.4 Two dimensional-discrete Fourier transform (2D-DFT)

This section contains a quick review of 2D-DFT (see [Ciz86] for more). The 2D-DFT of a
matrix U = [upq]p,q=1,2,...,N−1 ∈ CN×N is represented as F (U) = [ fmn]m,n=0,1,...,N−1 ∈ CN×N and
fmn is defined by

fmn :=
N−1∑
p=0

N−1∑
q=0

upqω
qm

ω
pn, where ω = e− j 2π

N . (7.6)

A matrix representation of F (U) is given by

F (U) = Ω
T
NUΩN, where ΩN :=



1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)2


(7.7)

The elements of the matrix F (U) in equation (7.7) can also be computed using polynomials.
Such a polynomial interpretation of 2D-DFT is essential for the results in this section. In order
to compute the 2D-DFT of U , we need to first construct a two-variable polynomial g(x,y) :=
XTUY, where X := col

(
1,x,x2, . . . ,xN−1) and Y := col

(
1,y,y2, . . . ,yN−1). Then, the elements

of the matrix F (U) are given by fmn = g(ωm,ωn), where m,n = 0,1, . . . ,N−1. Note that the
inverse 2D-DFT is given by

upq =
1
N2

{
N−1∑
m=0

(
N−1∑
n=0

fmnω
−mq

)
ω
−np

}
, where ω = e− j 2π

N . (7.8)

7.2.5 Bounded-real and allpass systems

Analogous to passive systems, a system Σ with a minimal i/s/o representation as in equation
(7.1) is bounded-real if and only if there exists K = KT ∈Rn×n such that K satisfies the follow-
ing LMI: AT K +KA+CTC KB+CT D

BT K +DTC −(I−DT D)

6 0. (7.9)

We call LMI (7.9) the bounded-real LMI. The bounded-real LMI originates from a more fun-
damental law known as the dissipation inequality: a system with minimal i/s/o representation
(7.1) is bounded-real if and only if there exists K = KT ∈Rn×n such that for every col(x,u,y)∈
C∞(R,Rn+2p) that satisfies equation (7.1), we must have

d
dt

(
xT Kx

)
6 uT u− yT y for all t ∈ R. (7.10)
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It can be shown that K satisfies the dissipation inequality (7.10) if and only if K is a solution of
the bounded-real LMI (7.9). Analogous to passive systems, we call K to be a storage function
of the bounded-real system.

It is well-known in the literature that a system Σbr with input-output variables (u,y) is
bounded-real if and only if a system Σpas with input-output variables

(
u+y√

2
, u−y√

2

)
is passive: see

[HC08, Chapter 5]. Therefore, in this chapter, we call Σpas to be the passive counterpart of Σbr

and Σbr to be the bounded real counterpart of Σpas. Further, if an i/s/o representation of Σbr is

d
dt

x = Ax+Bu,y =Cx+Du, where A ∈ Rn×n,B,CT ∈ Rn×p, and D ∈ Rp×p, (7.11)

then an i/s/o representation of the corresponding passive system Σpas is

d
dt

x =
(
A−B(I +D)−1C

)
x+

1√
2

(
B+B(I +D)−1(I−D)

)
v,

r =−
√

2(I +D)−1Cx+(I +D)−1(I−D)v, where v :=
u+ y√

2
,r :=

u− y√
2
. (7.12)

Similarly, if equation (7.11) is a minimal i/s/o representation of a passive system, equation
(7.12) is the minimal i/s/o representation of its bounded-real counterpart.

It is known that bounded-real systems admit a special class of systems called the allpass
systems. A bounded-real system is called allpass if there exists K = KT ∈ Rn×n such that

d
dt

(
xT Kx

)
= uT u− yT y, for all col(x,u,y) that satisfy the i/s/o equations of the system.

Hence, an allpass system satisfies the bounded-real LMI (7.9) with equality, i.e., for an allpass
system there always exists a unique K = KT ∈ Rn×n such thatAT K +KA+CTC KB+CT

BT K +C 0

= 0⇒

AT K +KA+CTC = 0,

KB+CT = 0.
(7.13)

We review a property of allpass systems next that we crucially used in Section 7.9. Since the
property directly follows from a result presented in [Glo84, Theorem 5.1], we present it as a
proposition next.

Proposition 7.5. [Glo84, Theorem 5.1] Consider an allpass system with a minimal i/s/o rep-
resentation as in equation (7.1). Let P and Q be its controllability and observability Gramian,
respectively. Then, PQ = In.

7.2.6 Gramian and balancing

Consider a stable, controllable, and observable system with a minimal i/s/o representation as in
equation (7.1). Then the Lyapunov equations AP+PAT +BBT = 0 and AT Q+QA+CTC = 0
have unique solutions P > 0 and Q > 0, respectively: see [Ant05, Section 4.3]. P and Q are
called the (infinite) controllability and observability Gramian matrices, respectively.
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For one of the main results of this chapter we also need the concept of balancing and
we review this next. A system is said to be represented in a balanced state-space basis if the
controllability Gramian P and observability Gramian Q are equal. The proposition next gives a
procedure to compute the balancing transformation of a system.

Proposition 7.6. [Ant05, Lemma 7.3] Consider a controllable, observable and stable system
with a minimal i/s/o representation as in equation (7.1). Let the corresponding controllabil-
ity Gramian and observability Gramian be P and Q, respectively. Assume P := UU∗ and
U∗QU = KS2K∗ then a balancing transformation is given by T =

√
S K∗U−1 (see footnote

3 for definition3 of
√

S).

Now that we have reviewed the preliminaries required for the main results in this chapter,
we proceed to state the main results in the next section.

7.3 Controllability matrix method

At the very outset, we present the method to compute the storage function of a lossless system
using Algorithm 5.16. Note that this method is already known in the literature [AV06, Section
6.5]. However we present this method here to demonstrate that as a special case of Algorithm
5.16, we can retrieve a classic and well-known algorithm for lossless systems. In order to get
to the main result of this section, we need to first present a property of the Markov parameters
of the Hamiltonian system corresponding to a lossless system. This is an adaptation of Lemma
5.14 in Chapter 5 to lossless systems.

Markov parameters of ΣHam corresponding to a lossless system are all zero

Lemma 7.7. Consider a lossless SISO system Σ with a minimal i/s/o representation as
in equation (5.9). Let the corresponding Hamiltonian system be as defined in equation
(5.11). Then, ĉÂkb̂ = 0 for all k ∈ N.

Proof: Recall from Lemma 5.13 that G(s)+G(−s)T = ĉ(sI2n− Â)−1b̂. We know that for a
lossless system G(s)+G(−s)T = 0, therefore we must have

ĉ(sI2n− Â)−1b̂ = 0⇒ ĉÂkb̂ = 0 for all k ∈ N.

This completes the proof of the lemma. �

Now we present the main result of this section.

3 A matrix R = RT > 0 is said to be the square root of another matrix S = ST > 0 if R2 = S. We denote such a
matrix as

√
S := R.
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Storage function computation using controllability matrix

Theorem 7.8. Consider a lossless SISO system Σ with a minimal i/s/o representation
as given in equation (5.9). Let Â, b̂, ĉ be as defined in equation (5.11). Define W :=[
b̂ Âb̂ · · · Ân−1b̂

]
∈ R2n×n. Partition W =

[
W1
W2

]
, where W1,W2 ∈ Rn×n. Then, the

following statements are true:

(1) W1 is invertible.

(2) K =W2W−1
1 is symmetric.

(3) K is the unique solution to the corresponding KYP LME (7.3).

Proof: (1): Note that on simple multiplication it can be verified that

W1 =
[
b Ab · · · An−1b

]
, and W2 =

[
cT −(cA)T · · · (−1)n−1(cAn−1)T

]
.

Since the system ΣHam is minimal, i.e., controllable, it is evident that W1 is invertible.
(2): This directly follows from the proof of Statement (2) of Theorem 5.7.
(3): Note that W2W−1

1 b =
[
cT −(cA)T · · · (−1)n−1(cAn−1)T

]
e1 = cT . Thus, Kb−cT = 0.

Now we show that AT K+KA6 0. Similar to the proof of Statement (3) of Theorem 5.7 instead
of proving AT K +KA 6 0, we prove W T

1 (AT K +KA)W1 6 0. From equation (5.41), we know
that W T

1 (AT K +KA)W1 =: [`ki]k,i∈{1,2,...,nf}, where `ki = (−1)k−1ĉÂk+i−1b̂. Using Lemma 7.7
we therefore have W T

1 (AT K +KA)W1 = 0⇒ (AT K +KA) = 0.
Now we prove the uniqueness of K. Let us assume that there exists another solution K1 of

the KYP LME (7.3). Then, we have K1b = cT and Kb = cT . Subtracting these two equations,
we have (K1−K)b = 0n,1. Further, AT K1+K1A = 0 and AT K+KA = 0. Subtracting these two
equations, we have

AT (K1−K)+(K1−K)A = 0n,n (7.14)

Post-multiplying equation (7.14) with b and using the fact that (K1−K)b = 0n,1, we have (K1−
K)Ab = 0n,1. Proceeding in a similar way, we can show that

(K1−K)
[
b Ab · · · An−1b

]
= 0n,n⇒ (K1−K)W1 = 0n,n. (7.15)

Since W1 is invertible, it is evident from equation (7.15) that K1−K = 0n,n⇒ K1 = K. �

From Theorem 7.8 we infer that Algorithm 5.16 can be used to compute the storage function
of a lossless system. Note that the matrix W1 here is the controllability matrix of the lossless
system. Since this method uses the controllability matrix of the system to compute the storage
function of the system, we call this method the controllability matrix method. Interestingly, this
method is already known in the literature and an alternate proof to the same can be found in
[AV06, Section 6.5].
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Example 7.9. Consider a lossless system with a transfer function G(s) =
8s2 +1
6s3 + s

and an i/s/o
representation:

d
dt

x =


0 1 0

0 0 1

0 −1
6 0

x+


0

0

1

u, y =
1
6


1

0

8


T

u (7.16)

Here W1 =
1
6


0 0 6

0 6 0

6 0 −1

 and W2 =
1

18


3 0 0

0 1 0

24 0 −1

. Then, K =W2W−1
1 = 1

36


1 0 6

0 2 0

6 0 48

.

It can be easily verified that AT K +KA = 0 and Kb = cT .

We adapt Algorithm 5.16 for lossless systems and present it next.

Algorithm 7.10 Controllability matrix method to compute storage function of a lossless system.

Input: (A,b,c) matrices corresponding to a lossless SISO system Σloss.
Output: K = KT ∈ Rn×n.

1: Construct Â =

A 0

0 −AT

, b̂ =

 b

cT

 and ĉ =
[
c −bT

]
.

2: Construct W :=
[
b̂ Âb̂ Â2b̂ · · · Ân−1b̂

]
∈ R2n×n.

3: Partition X as X =:

X1Λ

X2Λ

 where X1Λ,X2Λ ∈ Rn×n.

4: Compute the storage function: K = X2ΛX−1
1Λ
∈ Rn×n.

In what follows we provide four alternate methods to compute the storage function of a
lossless system. The first among these is a method based on the algebraic relations between the
states and costates of a lossless system.

7.4 Minimal polynomial basis (MPB) method

In this section we present a method to compute the storage function of a lossless system using
the notion of minimal polynomial basis. This method is developed using certain algebraic rela-
tions between the states and costates of a lossless system. In what follows, we show that these
algebraic relations provide a method to compute the unique storage function (unique solution
of the KYP LME (7.18)) of a lossless system.
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Storage function computation using algebraic-relations between states and costates

Theorem 7.11. Consider a lossless system Σ with a minimal i/s/o representation d
dt x =

Ax+Bu, y =Cx, where A ∈Rn×n and B,CT ∈Rn×p. Let the corresponding Hamiltonian
system ΣHam be as defined in equation (7.4). Then, the following statements are true:

(1) ΣHam is not autonomous, i.e., det(sE−H) = 0.

(2) there exists a unique K = KT ∈ Rn×n such that

d
dt

(
xT Kx

)
= 2uT y for all col(x,u,Cx) ∈ Σ. (7.17)

(3) there exists a unique K = KT ∈ Rn×n such that

nrank


sIn−A 0 −B

0 sIn+AT −CT

−C BT 0

= nrank


sIn−A 0 −B

0 sIn+AT −CT

−C BT 0

−K In 0

 . (7.18)

Further, for K = KT ∈ Rn×n,

K satisfies equation (7.17) if and only if K satisfies equation (7.18). (7.19)

In order to prove Theorem 7.11, we need a result that we present next. This result states that
the difference dynamics x(t)−Kz(t) of a lossless system is orthogonal to the subspace img B
for all t > 0 if and only if it is orthogonal to the controllable subspace spanned by columns
of
[
B AB · · · An−1B

]
for all t > 0. We use the symbol⊥ to denote orthogonality between

subspaces.

Orthogonality between controllable subspace and difference dynamics x(t)−Kz(t)

Lemma 7.12. Consider a controllable, lossless system Σ. An i/s/o representation of Σ is
d
dt x = Ax+Bu, and y = Cx, where A ∈ Rn×n and B,CT ∈ Rn×p. Let the corresponding
Hamiltonian system be as defined in equation (7.4). Let K = KT ∈ Rn×n be a solution of
the LME (7.3). Then the difference dynamics z(t)−Kx(t) satisfies the following(

z(t)−Kx(t)
)
⊥ img B⇐⇒

(
z(t)−Kx(t)

)
⊥ img

[
B AB · · · An−1B

]
for all t > 0.

Proof: Let the controllability matrix be C :=
[
B AB A2B · · · An−1B

]
. All the arguments

here are true for each t > 0.
(⇐) Given C T (z−Kx) = 0, i.e., BT (z−Kx) = 0. Hence, z(t)−Kx(t)⊥ img B for all t > 0.
(⇒) We use the principle of mathematical induction to prove that (AkB)T (z−Kx) = 0 for k ∈
{0,1, . . . ,n−1}.
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Base step: (k = 0) Since K is a solution of the LME (7.3), we have KB =CT . Therefore, using
equation (7.4), BT (z−Kx) = BT z−Cx = 0.
Induction step: Assume (AkB)T (z−Kx) = 0 for k < n−1. Then, we prove that (Ak+1B)T (z−
Kx) = 0. Note that

BT (AT )k+1(z−Kx) = BT (AT )k(AT z−AT Kx) (7.20)

From equation (7.4), we know that ż = −AT z+CT u⇒ AT z = −ż+CT u and ẋ = Ax+Bu⇒
Ax = ẋ−Bu. Using these in equation (7.20) and the fact that AT K +KA = 0, we have

BT (AT )k+1(z−Kx) = BT (AT )k(AT z+KAx) = BT (AT )k (−ż+CT u+K(ẋ−Bu)
)

(7.21)

Since KB−CT = 0, we therefore infer from equation (7.21) that

BT (AT )k+1(z−Kx) = BT (AT )k (Kẋ− ż) =
d
dt
(AkB)T (Kx− z). (7.22)

Using the induction hypothesis, we infer from equation (7.22) that BT (AT )k+1(z−Kx) = 0. �

Using Lemma 7.12, we prove Theorem 7.11 next.
Proof of Theorem 7.11: (1): From Lemma 7.1, we have det(sE −H) = 0. Using [PW98,
Section 3.2], we know that a system is autonomous if and only det(sE−H) 6= 0. Therefore,
ΣHam is non-autonomous.
(2): Since Σ is a lossless system, it is passive. Hence, there exists K = KT ∈Rn×n that satisfies
equation (7.17). We prove uniqueness of K next. Assume K1 =KT

1 ∈Rn×n and K2 =KT
2 ∈Rn×n

induces the storage function of a lossless system. Since the storage function of a lossless system
is unique ([WT98, Remark 5.13]), xT (t)K1x(t) = xT (t)K2x(t) for all t ∈ R. This is true if and
only if K1 = K2. This proves the uniqueness of K.
(3): Using equation (7.4), we have

d
dt
(xT z) = (Ax+Bu)T z+ xT (−AT z+CT u) = uT BT z+uTCx = 2uTCx = 2uT y (7.23)

Using equation (7.17) in equation (7.23) and expanding, we get

d
dt
(xT z) =

d
dt
(xT Kx)⇒ ẋT z+ xT ż− ẋT Kx− xT Kẋ = 0. (7.24)

Using equation (7.4) and the LME (7.3) in equation (7.24), we have

(Ax+Bu)T z+ xT (−AT z+CT u)− (Ax+Bu)T Kx− xT K(Ax+Bu) = 0

⇒ uT BT z− xT (AT K +KA)x− xT (KB−CT )u− xT KBu = 0

⇒ uT BT z− xT KBu = 0⇒ uT BT (z−Kx) = 0. (7.25)

Since equation (7.25) is true for all system trajectories col(x,u,y) ∈ Σ, BT (z−Kx) = 0. Using
Lemma 7.12, we have z−Kx ∈ ker C T . However (A,B) is a controllable system with minimal
state representation, hence z−Kx = 0 is true for all trajectories in Σ. Thus,

z−Kx = 0⇒
[
−K In 0

][ x
z
u

]
= 0
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Therefore equation (7.18) follows. Next we prove equation (7.19).
Only if: This follows from the proof of Statement (3) of this theorem.
If: Note that equation (7.18) means the Hamiltonian system ΣHam has trajectories col(x,z,u)
that satisfy z = Kx for all t > 0. Further, from [WT98, Section 10], it is clear that the states and
costates of a system satisfy d

dt

(
xT z
)
= 2uT y. In this equation, replacing z by Kx, we therefore

have d
dt

(
xT Kx

)
= 2uT y for all t > 0. �

Equation (7.19) implies that for a lossless system with storage function K the Hamiltonian
pencil satisfies the following rank condition:

rank


λ In−A 0 −B

0 λ In+AT −CT

−C BT 0

= rank


λ In−A 0 −B

0 λ In+AT −CT

−C BT 0

−K In 0

 , for all λ ∈ C.

(7.26)

However, consider a passive system Σ that is not lossless. Let K be a rank-minimizing solution
of the KYP LMI corresponding to a Lambda-set Λ of the Hamiltonian pencil. Then, we have

rank


λ In−A 0 −B

0 λ In+AT −CT

−C BT 0

6 rank


λ In−A 0 −B

0 λ In+AT −CT

−C BT 0

−K In 0

 , for λ ∈ C. (7.27)

The equality in equation (7.27) is achieved only at those complex numbers that are elements of
Λ. We illustrate this with an example next.

Example 7.13. Consider a passive system Σ (not lossless) with transfer function G(s) =
s+2
s+1

.

A minimal i/s/o representation of the system is ẋ = −x+ u and y = x+ u. Note that the feed-
through regularity condition is satisfied here and hence, Proposition 5.4 can be used to compute
the storage functions of such a system. The Hamiltonian pencil for this system is

R(s) := (sE−H) =


s+1 0 −1

0 s−1 −1

−1 1 −2


Here det(R(s)) = 4− 2s2 6= 0 and therefore, the Lambda-sets possible are Λ1 = {−

√
2} and

Λ2 = {
√

2}. For Λ1, the storage function is KΛ1 = 3−2
√

2. Note that

rank


−
√

2+1 0 −1

0 −
√

2−1 −1

−1 1 −2

= 2 and rank


−
√

2+1 0 −1

0 −
√

2−1 −1

−1 1 −2

−(3−2
√

2) 1 0

= 2.
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Consider any other arbitrary value of K which is not a solution to the ARE corresponding to
the system Σ. Say K = 1 then

rank


−
√

2+1 0 −1

0 −
√

2−1 −1

−1 1 −2

−1 1 0

= 3.

Hence for any other arbitrary value of K, rank

 λE−H

−K I 0

 6= rank(λE−H).

We use Theorem 7.11 to propose a theorem next that leads to the algorithm to compute
the storage function of a lossless system.

MPB based method to compute storage function of a lossless system

Theorem 7.14. Consider the Hamiltonian matrix pair (E,H) as defined in equation
(7.4). Let M(s) ∈ R[s](2n+p)×p be any minimal polynomial nullspace basis (MPB) for

the Hamiltonian pencil (sE−H). Partition M =

M1(s)

M2(s)

 with M1 ∈ R[s]2n×p. Let N(s)

be any MPB for M1(s)T . Then, the following statements are true.

1. Each of the first n Forney invariant minimal indices of N(s) are 0, i.e., first n
columns of N(s) are constant vectors.

2. Partition N(s) into
[
N1 N2(s)

]
with N1 ∈R2n×n and further partition N1 =

N11

N12


with N12 ∈Rn×n. Then N12 is invertible and K :=−N11N−1

12 is the storage function
for Σ.

Proof: (1): We first prove that the first n minimal indices of the Hamiltonian pencil sE−H are
0. Since nrank(sE−H) = 2n there exists M(s)∈R[s](2n+p)×p with nrank(M(s)) = p such that
R(s)M(s) = 0. From Theorem 7.11, we know that

[
−K In 0

]
is in the row span of sE−H.

Therefore,

[
−K In 0

]
M(s) = 0⇒

[
−K In 0

]M1(s)

M2(s)

= 0⇒M1(s)T

−K

In

= 0. (7.28)

The nullspace of M1(s)T must have n constant polynomial vectors. Hence the first n (Forney
invariant) minimal indices are 0.
(2): A minimal polynomial nullspace basis of M1(s)T is the columns of N(s) ∈ R[s]2n×(2n−p).

Partition N into
[
N1 N2(s)

]
with N1 ∈ R2n×n and further partition N1 =

N11

N12

 with N12 ∈
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Rn×n. From equation (7.28), we infer that

img

N11

N12

= img

−K

I

⇒ K =−N11N−1
12 .

The construction of K ∈ Rn×n in the proof is done such a way that
[
−K I 0

]
is in the row

span of sE−H. Therefore, from Theorem 7.11, K ∈ Rn×n satisfies equation (7.17) and hence
K induces the storage function of Σ. �

Using the system in Example 7.9 we illustrate the method to compute the storage function of a
lossless system using Theorem 7.14.

Example 7.15. The MPB corresponding to the Hamiltonian pencil (sE−H) of the system given
in Example 7.9 is

[36 36s 36s2 1+6s2 2s 6+48s2︸ ︷︷ ︸
M1(s)T

6s+36s3]T

By Theorem 7.14 the first n = 3 columns of the minimal polynomial basis of the M1(s)T have
Forney indices 0. The first 3 columns of the minimal polynomial basis of M1(s)T are

−0.0189 0.0025 −0.0987

−0.0002 −0.0554 −0.0013

−0.0960 0.0195 −0.7921

0.9938 −0.0017 −0.0470

0.0028 0.9981 0.0243

−0.0522 −0.0144 0.6000


=:

N11

N12



Therefore, K =−N11N−1
12 = 1

36


1 0 6

0 2 0

6 0 48

 is the storage function of the system.

Next we present the algorithm to compute the storage function of a lossless system using
the theory developed in Theorem 7.11 and Theorem 7.14.

Algorithm 7.16 Minimal polynomial basis algorithm.

Input: R(s) := sE−H ∈ R[ξ ](2n+p)×(2n+p).
Output: K ∈ Rn×n with xT Kx the storage function.

1: Compute a minimal polynomial nullspace basis of R(s). Result: A full column rank poly-
nomial matrix M(s) ∈ R[ξ ](2n+p)×p.

2: Partition M(s) as

M1(s)

M2(s)

 where M1(s) ∈ R[ξ ]2n×p.
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3: Compute a minimal polynomial nullspace basis of M1(s)T . Result: A full column rank polynomial
matrix N(s) ∈ R[ξ ]2n×(2n−p).

4: Partition N(s) =

N11 N12(s)

N21 N22(s)

 with N11, N21 ∈ Rn×n. (See Theorem 7.14)

5: Define K :=−N11N−1
21 ∈ Rn×n.

Algorithm 7.16 is based on computation of nullspace basis of polynomial matrices. Effi-
cient and stable computation of nullspace basis of a polynomial matrix can be done by block
Toeplitz matrix algorithm: more details can be found in [KPB10].

Both the controllability matrix method and the MPB method described above do not de-
pend on the basis in which the system matrices are represented. However, in what follows,
we present methods to compute the storage function of a lossless system using special basis to
represent the system matrices.

7.5 Partial fraction method: SISO case

In this section we use partial fraction/continued fraction expansion of the transfer function of
a lossless system to compute the storage function of the system. The capacitor voltages and
inductor currents in the electrical network corresponding to the system’s transfer function are
taken as the states while computing the storage function in this section. In other words, this
method is based on viewing the lossless transfer function G(s) as the driving point impedance
or driving point admittance of an LC network. Since the system is lossless, the poles and zeros
of the system are all on the imaginary axis. Expansion of the proper transfer function G(s) into
its partial fractions using the Foster form gives

G(s) =
r0

s
+

m∑
q=1

rqs
s2 +ω2

q
(7.29)

where r0> 0,r1,r2, . . . ,rm > 0 and each ωq > 0. For a system with proper transfer function G(s)
as in equation (7.29), a minimal i/s/o representation

d
dt

x f = A f x f +B f u f and y f =C f x f (7.30)

is given by

A f := diag(A0,A1, · · · ,Am) where A0 := 0,Aq :=

 0 −rq

ω2
q

rq
0

 with q ∈ {1,2, · · · ,m}, and

B f := col(r0,r1,0,r2,0, . . . ,rm,0) ∈ R2m+1,C f :=
[
1 1 0 1 0 · · · 1 0

]
∈ R2m+1.
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Figure 7.2: LC realization based on partial fractions: Foster-I form

On the other hand, expansion of a proper transfer function G(s) = gq(s) in continued fraction
using Cauer-II methods involves the following iteration:

gq(s) =
hq

s
+

1
gq+1(s)

, gn(s) :=
hn
s

(7.31)

where q = 1,2, · · · ,n and n is the McMillan degree4 of the system. For the sake of sim-
plicity, we assume that the McMillan degree n of the system is odd. Consider the vectors

V :=
[
v1 v2 · · · vm

]T
, I :=

[
i1 i2 · · · im−1

]T
and B2 :=

[
h1 h3 · · · hn

]T
∈ Rm where

m := n+1
2 . For p = 1,2, · · · ,m−1, define Hu,H l ∈ R(m−1)×(m−1) such that

Hu
p j :=

 0 for p > j

h2p for p6 j
H`

p j :=

 h2p+1 for p> j

0 for p < j

A minimal representation of the

system G(s),

ẋc = Acxc +Bcuc and yc =Ccxc (7.32)

is given by the following matrices:

Ac :=


0 Hu

0

−H`

 , B :=

 0

B2

 and C :=

 0

1m

T

where xc :=

 I

V

 .

The physical realization of transfer function in equation (7.29) in an LC network can be done
using the Foster method (as shown in Figure 7.2) and the Cauer method (as in Figure 7.3).
Using equation (7.30) and equation (7.32) we present a method to compute the storage function
of a lossless system.

4The McMillan degree of a linear time-invariant system is the order of any minimal state-space realization of
the system.
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+
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Figure 7.3: LC realization based on continued fractions: Cauer-II form

Foster & Cauer method to compute the storage function of a lossless system

Theorem 7.17. Consider a controllable, lossless system with a strictly proper transfer
function G(s) of the form given in equation (7.29) and equation (7.31). Assume the
McMillan degree of G(s) is odd. For each of the two cases ((a) & (b) below correspond-
ing to Foster and Cauer realizations), consider the state-space realizations in which the
states are the capacitor voltages and inductor currents. Then, the stored energy is

xT Kx =
∑
L j

L ji2j +
∑
Cq

Cqv2
q.

More precisely,

(a) For systems with proper impedance function as in equation (7.29) and a minimal
i/s/o representation as in (7.30), the unique storage function is xT

f K f x f , with the
diagonal matrix K f ∈ Rn×n defined by

K f := diag

(
1
r0
,K1,K2, . . . ,Km

)
, where Kq :=

r−1
q 0

0 riω
−2
i

 with q ∈ {1,2, · · · ,m}.

(b) For systems with proper admittance function as in equation (7.31) and a minimal
i/s/o representation as in equation (7.32), the unique storage function is xT

c Kcxc,
with the diagonal matrix Kc ∈ Rn×n defined by

Kc := diag

(
1
h2

,
1
h4

, · · · , 1
hn−1

,
1
h1

,
1
h3

, · · · , 1
hn

)
.

Proof: (a) Note that ωq 6= ω j for q 6= j guarantees controllability and observability5 of the
system. We prove the theorem for n= 5, the general case follows from it. The transfer function
in partial fraction form is

G(s) =
r0

s
+

r1s
s2 +ω2

1
+

r2s
s2 +ω2

2
.

5It can be verified that the controllability matrix [B f A f B f · · · An−1
f B f ] and observability matrix

[CT
f AT

f CT
f · · · An−1T

f CT
f ] has full rank if and only if ωq 6= ω j for q 6= j.
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Hence, by simple inspection we can infer that

A = diag

0,

 0 −r1

r1
ω2

1
0

 ,
 0 −r2

r2
ω2

2
0

 , B =
[
r0 r1 0 r2 0

]T
,C =

[
1 1 0 1 0

]
.

Consider K f = KT
f = [kxy]x,y=0,1,··· ,4 ∈ R5×5. Since ω1 6= ω2 and K f satisfies AT

f K f +

K f A f = 0, we have K f = diag(k00,k11, · · · ,k44),
k22
k11

= r1
r2
, and k44

k33
= r3

r4
. Further, on use of the

equation BT
f K f −C f = 0 we get a unique K f of the form K f = diag

(
1
r0
, 1

r1
, r1

ω2
1
, 1

r2
, r2

ω2
2

)
. This

completes the proof Statement (a) of Theorem 7.17.
(b) We give a brief outline of the proof here. We show it for a system with McMillan degree
n= 5. The proof for the general case follows from it. Using equation (7.32), we have

Ac =



h2 h2

0 h4

0

−h3 0

−h5 −h5


, Bc =



0

0

h1

h3

h5


,Cc =



0

0

1

1

1



T

Solving the matrix equations AT
c Kc +KcAc = 0 and BT

c Kc−Cc = 0, we get the unique diagonal
matrix Kc := diag

(
1
h2
, 1

h4
, 1

h1
, 1

h3
, 1

h5

)
. Hence Kc induces the storage function xT

c Kcxc of the
system. This completes the proof Statement b) of Theorem 7.17. �

Note that for systems with even McMillan degree the term
r0

s
and

h1

s
in equation (7.30) and

equation (7.32) will not be present. Therefore, in Theorem 7.17 while computing the storage

function we have to drop the terms
1
r0

and
1
h1

from the expressions for K f and Kc, respectively.

We revisit the example in Example 7.9 to demonstrate Theorem 7.17 next.

Example 7.18. For the lossless system Σ with transfer function G(s) =
8s2 +1
6s3 + s

in Example 7.9,

by partial fraction expansion we get

G(s) =
1
s
+

s/3
s2 +1/6

⇒ r0 = 1,r1 =
1
3
, and ω

2
1 =

1
6
.

The LC circuit corresponding to the Foster realization therefore is as given in Figure 7.4.

-

v
vC1

+

2H

3F

1F

vC2

iL

-

i

+

-

+

Figure 7.4: LC realization of transfer function G(s) in Example 7.18
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Foster realization (Theorem 7.17 (a)): the state-vector is x = col(vC1,vC2, iL). Here

A f =


0 0 0

0 0 −1
3

0 1
2 0

 ,B f =


1

1
1
3

 ,C f =


1

1

0


T

,K f =


1 0 0

0 3 0

0 0 2


By continued fraction expansion, we have the following

G(s) =
1
s
+

1
(1/2s)+ 1

1/3s

⇒ h1 = 1,h2 =
1
2
, and h3 =

1
3
.

The LC circuit corresponding to the Cauer realization is also as shown in Figure 7.4.
Cauer realization (Theorem 7.17 (b)): the state-vector is x = col(iL,vC1,vC2). Here

Ac =


0 0 1

2

0 0 0

−1
3 0 0

 ,Bc =


0

1
1
3

 ,Cc =


0

1

1


T

,Kc =


2 0 0

0 1 0

0 0 3


Based on Theorem 7.17, we present an algorithm to compute the storage function of a

lossless system referred to as the ‘Partial fraction’ algorithm next. We do not explicitly write
down the algorithm for the Cauer form, since it is almost similar to the one presented below.

Algorithm 7.19 Partial fraction based algorithm - SISO.

Input: Strictly proper transfer function of the lossless system G(s).
Output: K ∈ Rn×n with xT Kx the storage function.

1: Calculate the partial fraction expansion:

G(s) =
r0

s
+

m∑
i=1

Gi(s), where Gi(s) =
ris

s2 +ω2
i
, and ωi > 0.

2: For each Gi(s), obtain (Ai,Bi,Ci) triple, where Ai ∈ R2×2, Bi ∈ R2 and Ci ∈ R1×2 using
equation (7.30).

3: Obtain Ki from each triple (Ai,Bi,Ci) using Theorem 7.17.
4: The storage function is given by

K := diag

(
1
r0
,K1, K2, . . . , Km

)
∈ Rn×n.

7.6 Partial fraction method: MIMO case

In this section we generalize the SISO result based on Foster LC realization to MIMO lossless
systems. Gilbert’s realization is a well-known method to find the i/s/o representation of MIMO
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systems [Kai80, Section 6.1]. However, such a method does not guarantee an i/s/o represen-
tation with the inductor currents and capacitor voltages as the states in an LC realization. We
need such a form of A since the proposed method uses energy stored in inductor and capacitor
as the storage function. In this section we present a method to find the i/s/o representation of a
lossless system such that the inductor current and capacitor voltage are the states of the system.
We then proceed to compute the storage function matrix K with respect to these states.

7.6.1 Gilbert’s realization adapted to lossless systems

Before we present the main results of the section, we revisit Gilbert’s theorem as given in
[Gil63, Theorem 7]. This proposition gives a method to compute the McMillan degree of a
linear time-invariant MIMO system.

Proposition 7.20. [Gil63, Theorem 7] Consider a proper rational transfer-function matrix G(s)
whose elements have semi-simple poles at s = λi, i = 1,2, . . . ,q. Let the partial fraction expan-
sion of G(s) be

G(s) =
q∑

i=1

Ri

s−λi
+D, where Ri = lim

s→λi
(s−λi)G(s) and D = lim

s→∞
G(s).

Corresponding to each λi, let the rank of the Ri matrix be ri. Then McMillan degree corre-
sponding to the system is given by n=

∑q
i=1ri.

For systems with imaginary axis poles, Proposition 7.20 is adapted and presented as
Lemma 7.22 next. However, before that we review necessary and sufficient conditions for a
real rational matrix to be positive real and/or lossless.

Proposition 7.21. [AV06, Section 2.7] A transfer matrix G(s) ∈ R(s)p×p is positive real if and
only if

1. Each element of G(s) is analytic in the open right half s-plane.

2. G( jω)+G(− jω)T > 0 for all ω ∈ R such that jω is not a pole of any element of G(s).

Further, a positive real rational transfer matrix G(s) is lossless if and only if G(s)+G(−s)T = 0.

Let G(s) = [gi j] and poles of gi j be represented as P(gi j). Using Proposition 7.21,
we conclude that a necessary condition for a positive real transfer matrix to be lossless is
P(gi j)i 6= j ⊆P(gi j)i= j i.e. the poles of the off-diagonal entries of G(s) are also poles of the di-
agonal entries. This means that if the poles corresponding to the diagonal entries of the transfer
function G(s) are not poles of the off-diagonal entries of G(s) then the residue matrix corre-
sponding to such poles will be diagonal. Therefore, a more generalized case would be when the
poles of the off-diagonal and diagonal entries of G(s) are the same: thus ensuring non-diagonal
residue matrix. Hence, we deal with such systems only.
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Next we adapt Proposition 7.20 for the case of imaginary axis poles and present it as
a lemma. We will use the lemma to construct the minimal i/s/o representation of a MIMO
lossless system.

McMillan degree of a lossless system

Lemma 7.22. Consider a rational transfer matrix G(s) whose elements have simple
poles at s = 0 and/or s =± jωi, i = 1,2, · · ·q. Let the partial expansion of G(s) be

R0

s
+

q∑
`=1

R`(s)
s2 +ω2

`

+D =
R0

s
+

q∑
`=1

(
Z`

s+ jω`
+

Z∗`
s− jω`

)
+D,

where R0 = lims→0 sG(s)∈Rp×p,D = lims→∞ G(s)∈Rp×p are the residual matrices and
R`(s) is the residue matrix corresponding to the conjugate pair of poles on the imaginary
axis. Let r0 = rank(R0) and r` = rank(Z`). Then, the minimal order of the i/s/o repre-
sentation of the system is

n= r0 +

q∑
`=1

2×r`.

Proof: Note that rank(Z`) = rank(Z∗` ) = r`. Hence using Proposition 7.20, minimum number
of states for the system is

n= r0 +

q∑
`=1

rank(Z`)+

q∑
`=1

rank(Z∗` ) = r0 +

q∑
`=1

2×r`.

This completes the proof of the lemma. �

From Proposition 7.21, we know that for a lossless system G(s) =−G(−s)T . Hence the partial
fractions corresponding to each of the poles ω` have a skew symmetric structure. Consider
G` = [g`iv]. The general structure6 of G`(s) is given by

g`iv(s) =
α`

ivs−β `
iv

s2 +ω2
i
, where β

`
iv =−β

`
vi. (7.33)

We state and prove a theorem next which gives a procedure for construction of the (A,B,C)

matrices for lossless systems. For simplicity, we consider that the transfer matrix has only one
pair of conjugate poles on the imaginary axis, i.e., we consider q = 1 in G(s) =

∑q
`=1 G`(s).

In the next theorem we present a method to compute the storage function of a MIMO lossless
system for q = 1 case. For the general case, i.e., q > 1 we just have to apply the theorem
described below on each partial fraction individually.

6In general the elements of the transfer matrix G(s) may not be proper. However, there always exists an input-
output partition such that the transfer matrix is proper [WT98, Section 2]. Hence without loss of generality, we
assume the transfer matrix to be proper.
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Partial fraction method to compute the storage function of a lossless system

Theorem 7.23. Consider a lossless transfer matrix G(s) = R(s)
s2+ω2 =

Z
s+ jω + Z∗

s− jω , where
R(s) = sX−Y ∈R[s]p×p and Z,X, and Y ∈Rp×p. Elements of G(s) are of the form given
in equation (7.33). Assume rank(Z) = r. The i-th rows of R(s), X and Y are represented
as zi, xi and yi respectively. Then, the following state-space realization is minimal.

1. A := diag(Jω ,Jω , . . . ,Jω) ∈ Rn×n, where n := 2×r and Jω =
[

0 −ω
ω 0

]
.

2. Construct Bi := col(xi,
yi
ω
) for each i = 1,2, . . . ,p such that Bi 6= 0 and define B :=

col (B1,B2, · · · ,Br) ∈ Rn×p.

3. There exist c1,c2, · · · ,ci ∈R1×n such that C := col (e1,e3, · · · ,e2r−1,c1,c2, · · ·ci)∈
Rp×n where ci ∈ span of {e1,e2, · · · ,e2r−1} and ei is the i-th row of In.

Proof: Proof for the general case follows from the proofs of the following two special cases:
1. G(s) is nonsingular and p= 2. 2. G(s) is singular and p= 3.
G(s) is nonsingular and p= 2: Using equation (7.33), we have

R(s) = s

α1 α12

α12 α2

−
 0 β12

−β12 0

= sX−Y.=
R(s)

s2 +ω2 .

Since G(s) is nonsingular, r= 2 and n= 4 (By Lemma 7.22). Here

A = diag

0 −ω

ω 0

 ,
0 −ω

ω 0

 ,BT =

α1 0 α12 −β12
ω

α12
β12
ω

α2 0

 ,C =

1 0 0 0

0 0 1 0

 .
Using (A,B,C), it is easy to verify that C(sI−A)−1B = G(s). Applying the same construction
procedure for the matrices A,B,C, the theorem is proved for any nonsingular G(s) of arbitrary
order n.
G(s) is singular and p= 3: Using equation (7.33), we have

R(s) = s


α1 α12 α13

α12 α2 α23

α13 α23 α3

−


0 β12 β13

−β12 0 β23

−β13 −β23 0

= sX−Y.

Since G(s) is singular, consider the case when the rows of R(s) are related by the following
relation a× z1 + b× z2 =: z3. Here r = 2 and hence n = 4 (By Lemma 7.22). Therefore,
consider

A = diag

0 −ω

ω 0

 ,
0 −ω

ω 0

 ,BT =


α1 0 α12 −β12

ω

α12
β12
ω

α2 0

α13
β13
ω

α23
β23
ω

 ,C =


1 0 0 0

0 0 1 0

a 0 b 0

 .
With the constructed triplet (A,B,C), we have C(sI−A)−1B = G(s). �
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7.6.2 Storage function using adapted Gilbert’s realization

Given the minimal state-space realization of G(s) as in Theorem 7.23, we compute the storage
function associated with the system next. The storage function of a lossless system with transfer
function G(s) must satisfy the matrix equations (7.3) where the storage function is induced by
the symmetric matrix K. Let K = [kiv] and K = KT . Since K satisfies the first matrix equation
in equation (7.3), K has to have the form

K =



k11 0 k13 k14 · · · k1(n−1) k1n

0 k11 −k14 k13 · · · −k1n k1(n−1)

k13 −k14 k33 0 · · · k3(n−1) k3n

k14 k13 0 k33 · · · −k3n k3(n−1)
...

...
...

...
. . .

...
...

k1(n−1) −k1n k3(n−1) −k3n . . . knn 0

k1n k1(n−1) k3n k3(n−1) . . . 0 knn


.

Writing the n2

4 unknown elements in K as a vector yk, we define

yT
k :=

[
k11 k13 · · · k1n k33 k35 · · · k3n · · · knn

]
∈ R

n2
4 . (7.34)

The matrix K has to further satisfy the second matrix equation in (7.3). Hence we have p× n

linear equations of the form Pyk = q where q ∈ Rpn. Solution to these set of linear equations
gives us the desired storage function K. Note that for a controllable lossless system there exists
a unique symmetric matrix K that induces the storage function xT Kx (as seen in Theorem 7.8).
Hence for such a system the vector yk defined in equation (7.34) is unique as well. Further,
the facts that every conservative system admits a storage function K and the unique K satisfies
matrix equations (7.41) together guarantee that q ∈ img P in equation Pyk = q.

Note that Theorem 7.23 gives a minimal realization of G(s). With the same A obtained as
in Statement (1) of Theorem 7.23, we can have different (B,C) pairs. Depending on the specific
(B,C), we get different sets of linear equations. We compute the storage function of the system
using the triplet (A,B,C) obtained in Theorem 7.23. The unknown elements of K are hence
given by yk = P†q where P† is the pseudo-inverse of P.

The special structure of the triplet (A,B,C) is used to create P and q in the set of linear
equations Pyk = q. For simplicity, we show the construction of P and q for a lossless system
with a nonsingular transfer function G(s) ∈ R2×2(s). Since G(s) is nonsingular, the minimum
number of states of G(s) is 4.
Construction of P ∈ R8×4 and q ∈ R8: Let

BT :=
[
b1 b2 b3 b4

]
∈ R2×4, and C :=

[
c1 c2 c3 c4

]
∈ R2×4.
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1. Construction of matrix P: Partition PT =
[
PT

1 PT
2 · · · PT

n
2

]
where Pi ∈ R2p×p2

. Further,

each Pi is partitioned as
[
Pi1 Pi2 · · · Pip

]
where Piv ∈ R2p×(2p−2v+1). Therefore

P :=

P11 P12

P21 P22

=



b1 b3 b4 0

b2 b4 −b3 0

0 b1 −b2 b3

0 b2 b1 b4


.

2. Construction of vector q: q = col
(

c1, c2, c3, c4

)
.

This construction is to be used for any lossless system with nonsingular G(s). For a singular
G(s), a slightly modified construction procedure is to be used after appropriate zero padding in
B and C: this is skipped since the procedure is straightforward.

Next we present the algorithms to compute storage functions of lossless system based on
the notion of partial fraction described above.

Algorithm 7.24 Partial fraction based algorithm - MIMO.

Input: Strictly proper transfer function matrix of the lossless system G(s).
Output: K ∈ Rn×n with xT Kx the storage function.

1: Find the minimal state-space realization (A,B,C) of G(s) using Theorem 7.23.
2: Define a matrix P such that it is partitioned into row blocks Pi ∈ R2p×p2

.
3: Partition each Pi in column blocks Piv ∈ R2p×(2p−2v+1). Piv is the i-th row block and v-th

column block of P.
4: if i = v then

5: P̂ii =

b2i−1 b2i b2i+2 b2i+3 · · · b2p

b2i −b2i−1 b2i+3 −b2i+2 · · · −b2p−1


6: Delete second column of P̂ii. Result: Pii ∈ R2p×(2p−2i+1).
7: else
8: if i < v then
9: Piv = 0 ∈ R2p×(2p−2i+1)

10: else (i.e. if i > v)
11: Construct
12: Lv :=

[
b2v−1 −b2v

b2v b2v−1

]
, L̂v =

[
0 Lv⊗ Ip−v

]
13: col (P(v+1)v,P(v+2)v, · · · ,Ppv) := L̂v

14: where v = 1,2, · · · ,p−1.
15: end if
16: end if
17: q = col (c1,c2, · · · ,c2p)

18: Compute yk = P†q where y is as defined in equation (7.34).
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We illustrate the method in Algorithm 7.24 with the help of an example next.

Example 7.25. Consider a lossless system with a transfer function

G(s) =

 s
s2+16

2s−5
s2+16

2s+5
s2+16

2s
s2+16

=

 s 2s−5

2s+5 2s


s2 +16

=

s

1 2

2 2

−
 0 5

−5 0


s2 +16

The minimal state-space realization of G(s) using Theorem 7.23 is:

d
dt

x =


0 −4 0 0

4 0 0 0

0 0 0 −4

0 0 4 0

x+


1 2

0 5
4

2 2

−5
4 0

u, y =

1 0 0 0

0 0 1 0

x.

Using Algorithm 7.24, the linear equation we obtain is:

1 2 −1.25 0

2 2 0 0

0 −1.25 −2 0

1.25 0 −2 0

0 1 0 2

0 2 −1.25 2

0 0 1 −1.25

0 1.25 2 0




k11

k13

k14

k33

=



1

0

0

0

0

1

0

0



⇒


k11

k13

k14

k33

=


−0.56

0.56

−0.35

−0.28

 .

Therefore, the unique storage function of the lossless system is:

K =


−0.56 0 0.56 −0.35

0 −0.56 0.35 0.56

0.56 0.35 −0.28 0

−0.35 0.56 0 −0.28

 .

7.7 Bezoutian method: SISO case

In this section we compute the storage function of a lossless SISO system using the notion of
Bezoutian. Consider a lossless SISO system with transfer function G(s) = n(s)

d(s) , where n(s) and
d(s) are coprime and d(s) monic. It is known in the literature [WT98] that the storage function
of such a system can be computed using a two-variable polynomial expression of the form:

Ψ(ζ ,η) :=
d(ζ )n(η)+d(η)n(ζ )

ζ +η
(7.35)
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Note that by definition Ψ(ζ ,η) is a symmetric polynomial, i.e., Ψ(ζ ,η) = Ψ(η ,ζ )T . It is easy
to verify that with each two variable polynomial in R[ζ ,η ] a coefficient matrix with elements
from R is uniquely associated. Similarly, we associate the matrix Ψ̃ and Φ̃ with Ψ(ζ ,η) and
d(ζ )n(η)+d(η)n(ζ ), respectively. Let Ψ̃i,k and Φ̃i,k be the i-th row and k-th column element
of Ψ̃ and Φ̃, respectively. Therefore, equation (7.35) can be rewritten as:

Ψ(ζ ,η) :=
d(ζ )n(η)+d(η)n(ζ )

ζ +η
⇒
∑
i,k

Ψ̃i,kζ
i
η

k =

∑
i,k Φ̃i,kζ iηk

ζ +η
. (7.36)

Here Ψ̃ is the matrix that induces the storage function of the lossless system with transfer
function G(s). The storage function can be calculated by what may be called, “polynomial long
division technique” which is based on Euclidean long division of polynomials. We state this as
a result below.

Bezoutian method to compute the storage function of a lossless system

Theorem 7.26. Consider a lossless SISO system Σ with transfer function G(s) = n(s)
d(s) ,

where n(s), d(s) are coprime and d(s) is a monic polynomial. Let the controller canoni-
cal i/s/o representation of the system be:

d
dt

x = Ax+Bu and y =Cx. (7.37)

Construct the two variable polynomial zb(ζ ,η)

Ψ(ζ ,η) :=
n(ζ )d(η)+n(η)d(ζ )

ζ +η
=


1

ζ

...

ζ n−1



T

Ψ̃


1

η

...

ηn−1

 , (7.38)

where Ψ ∈ Rn×n is the corresponding coefficient matrix. Then, xT Ψ̃x is the unique stor-
age function for the lossless system, i.e., d

dt

(
xT Ψ̃x

)
= 2uy with the states in the controller

canonical representation.

Proof: This is a direct consequence of the result in [WT98, Theorem 5.7, Remark 5.13]. Hence,
we do not explicitly prove this theorem here. �

The conventional Bezoutian of two polynomials p(x) and q(x) is defined as

Bz(x,y) :=
p(x)q(y)− p(y)q(x)

x− y
.

Note the change in sign between this conventional Bezoutian definition and the one defined in
equation (7.38): in spite of the sign change, we call Ψ(ζ ,η) the Bezoutian due to the following
reasons. In any lossless system with transfer function n(s)

d(s) , when the order of the system is even
then n(s) is an odd polynomial, i.e., n(−s) = −n(s) and d(s) is even polynomial i.e. d(−s) =
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d(s). Thus, our definition is same as the conventional one if we substitute x = −ζ ; y = η

when the order of the system is even and x = ζ ; y = −η when the order of the system is odd.
Hence for lossless case Bz(x,y) = Ψ(ζ ,η) where x = −ζ , y = η for even order systems and
x = ζ , y =−η for odd order systems. In fact, Ψ̃ of equation (7.38) is nonsingular if and only if
n(s) and d(s) are coprime. This justifies the use of the term ‘Bezoutian’ for Ψ(ζ ,η) defined in
equation (7.38).
Methods to compute the Bezoutian: There are various methods of finding the Bezoutian Ψ(ζ ,η)

of two polynomials. In this chapter we propose three different methods to compute Ψ(ζ ,η):

(a) Euclidean long division method,

(b) Pseudo-inverse method, and

(c) 2 dimensional discrete Fourier transform method.

7.7.1 Euclidean long division method

Though Theorem 7.26 involves bivariate polynomial manipulation, Algorithm 7.31 below uses
only univariate polynomial operations. The algorithm is similar to Euclidean long division.
As in [BT02], write Φ(ζ ,η) = φ0(η) + ζ φ1(η) + · · ·+ ζ nφn(η). Then the storage function
Ψ(ζ ,η) = ψ0(η)+ζ ψ1(η)+ · · ·+ζ n−1ψn−1(η) can be computed by the following recursion
(see [BT02, Section 6.5]) with k = 1, . . . ,n−1:

ψ0(ξ ) :=
φ0(ξ )

ξ
, ψk(ξ ) :=

φk(ξ )−ψk−1(ξ )

ξ
. (7.39)

In the sequel, we present an algorithm to implement this method using simple matrix operations
in Algorithm 7.31.

7.7.2 Pseudo-inverse method

Recall that the coefficient matrix corresponding to Ψ(ζ ,η) and Φ(ζ ,η) are Ψ̃ ∈ Rn×n and
Φ̃ ∈ R(n+1)×(n+1), respectively. From equation (7.36), we have

(ζ +η)Ψ(ζ ,η) = M(ζ )T

0 1

1 0

M(η) = Φ(ζ ,η), where M(ξ ) :=

d(ξ )

n(ξ )

 (7.40)

Using equation (7.40), we have

σR(Ψ̃)+σD(Ψ̃) = Φ̃, (7.41)

where σR(Ψ̃) :=

 0n,1 Ψ̃

0 01,n

, and σD(Ψ̃) :=

01,n 0

Ψ̃ 0n,1

: see also [TR99]. Due to the

symmetry of Ψ(ζ ,η) and Φ(ζ ,η) the number of unknowns in Ψ̃ is n(n+1)
2 and the number of
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distinct elements in Φ̃ is (n+1)(n+2)
2 . Hence the matrix equation (7.41) can be rewritten as linear

equations of the form

Pby = qb, where Pb ∈ R
(n+1)(n+2)

2 × n(n+1)
2 , qb ∈ R

(n+1)(n+2)
2 (7.42)

y := col(Ψ11,Ψ12, · · · ,Ψ1n,Ψ22, · · · ,Ψ2n, · · · ,Ψnn) .

For a passive system, a storage function exists and this guarantees qb ∈ im Pb. We compute the
pseudo-inverse of the matrix Pb, i.e., P†

b and obtain y := P†
b qb. This gives the storage function.

Computation of the storage function of a lossless system using linear equations

Corollary 7.27. Consider a minimal, passive system Σ with transfer function G(s) = n(s)
d(s)

where d(s) is a monic polynomial and construct Φ̃ = [Φ̃i, j] as in equation (7.36). Let
the matrix equation (7.41) be written in the linear equation form Pby = qb. Then the
following are equivalent

1. Σ is lossless.

2. There exists a unique symmetric K such that xT Kx = 2uT y.

3. Pb is full column rank and qb ∈ img Pb.

Proof: The proof directly follows from the discussion before the corollary. �

7.7.3 2D-DFT method

In this section we propose a method to compute the coefficient matrix Ψ̃ of the Bezoutian
using two-dimensional discrete Fourier transform (2D-DFT). In order to develop this method
we present a theorem next establishing a link between 2D-DFT and two-variable polynomial
multiplication first. We use the symbols � and � to denote elementwise multiplication and
elementwise division, respectively.

Two-variable polynomial multiplication and 2D-DFT

Theorem 7.28. Consider the polynomial ring C[ζ ,η ] and the ideal A := 〈ζ N−1,ηN−1〉,
where N ∈ N. Define the map Π : C[ζ ,η ] −→ C[ζ ,η ]/A. Let P,Q,R ∈ CN×N be
such that p(ζ ,η) := XT PY, q(ζ ,η) := XT QY and r(ζ ,η) := XT RY, where X :=
col(1,ζ , . . . ,ζ N−1) and Y := col(1,η , . . . ,ηN−1). Let F (P),F (Q) and F (R) be the
2D-DFT matrices of P,Q and R, respectively. Then,

Π

(
p(ζ ,η)q(ζ ,η)

)
= r(ζ ,η) if and only if F (P)�F (Q) = F (R).

Proof: Only if: Since Π

(
p(ζ ,η)q(ζ ,η)

)
= r(ζ ,η) and the set {xN−1,yN−1} is the Gröbner
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basis of A, there exists unique a(ζ ,η),b(ζ ,η) ∈ C[ζ ,η ] such that

p(ζ ,y)q(ζ ,η) = a(ζ ,η)(xN−1)+b(ζ ,η)(yN−1)+ r(ζ ,η). (7.43)

On evaluating the right-hand side of the equation (7.43) at ζ = ωm and η = ωn for every
m,n = 0,1,2, . . . ,N−1, where ω = e− j 2π

N and using the fact that ωmN = ωnN = 1, we have

a(ωm,ωn)(ωmN−1)+b(ωm,ωn)(ωnN−1)+ r(ωm,ωn) = r(ωm,ωn). (7.44)

Therefore, for every m,n = 0,1,2, . . . ,N−1, the left-hand side of equation (7.43) becomes

p(ωm,ωn)q(ωm,ωn) = r(ωm,ωn) (7.45)

Let F (P) =: [emn]m,n=0,1,...,N−1, F (Q) =: [ fmn]m,n=0,1,...,N−1 and F (R) =: [gmn]m,n=0,1,...,N−1.
As discussed in Section 7.2.4, computation of 2D-DFT of a matrix U ∈ CN×N is essentially the
computation of XTUY at ζ = ωm and η = ωn for every m,n = 0,1,2, . . . ,N− 1. Hence, it is
clear that emn = p(ωm,ωn), fmn = q(ωm,ωn) and gmn = r(ωm,ωn). Rewriting equation (7.45)
in matrix form, we have F (P)�F (Q) = F (R).
If: Since F (P)�F (Q) = F (R), for every m,n = 0,1, . . . ,N−1 and ω := e− j 2π

N , we get

p(ωm,ωn)q(ωm,ωn) = r(ωm,ωn). (7.46)

Note that the variety of A, denoted by V(A), is the set
{
col(α,β ) ∈ C2|αN = 1 and β N = 1

}
.

Let I
(
V(A)

)
be the ideal consisting of all polynomials g(ζ ,η)∈C[ζ ,η ] such that g(α,β )= 0

for all col(α,β ) ∈V(A). Since equation (7.46) is true for every m,n = 0,1, . . . ,N−1, we have
p(α,β )q(α,β )− r(α,β ) = 0 for all (α,β ) ∈ V(A). Therefore, p(ζ ,y)q(ζ ,η)− r(ζ ,η) ∈
I
(
V(A)

)
.

By Hilbert’s Nullstellensatz in Proposition 7.4, we infer that the two-variable polynomial

p(ζ ,η)q(ζ ,η)− r(ζ ,η) ∈I
(
V(A)

)
=
√
A.

Note that V(A) ( C2 is a finite set and therefore A is a zero-dimensional ideal. Hence using
[CLO92, Proposition 2.7], we can verify that A is a radical ideal i.e.

√
A= A. Therefore,

p(ζ ,η)q(ζ ,η)− r(ζ ,η) ∈
√
A⇒ p(ζ ,y)q(ζ ,η)− r(ζ ,η) ∈ A

⇒Π

(
p(ζ ,η)q(ζ ,η)− r(ζ ,η)

)
= 0. (7.47)

Since LM
(

r(ζ ,η)
)
� (ζ η)N−1, we have Π

(
r(ζ ,η)

)
= r(ζ ,η). It therefore follows from

equation (7.47) that

Π

(
p(ζ ,η)q(ζ ,η)

)
= Π

(
r(ζ ,η)

)
⇒Π

(
p(ζ ,η)q(ζ ,η)

)
= r(ζ ,η).

This completes the proof of the theorem. �
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Note that for a system with McMillan degree n, the term ζ + η in equation (7.38) can be
rewritten as

ζ +η = XT JY, where J :=


0 1 0

1 0 0

0 0 0n−1,n−1

 ∈ R(n+1)×(n+1), (7.48)

where X := col(1,ζ , . . . ,ζ n) and Y := col(1,η , . . . ,ηn). Further, Ψ(ζ ,η) = XT

Ψ̃ 0

0 0

Y,

where Ψ̃ is as defined in equation (7.38). Then, using Theorem 7.28 we have the following
corollary.

Relation between 2D-DFT and Bezoutian corresponding to a lossless system

Corollary 7.29. Let Ψ̃ ∈ Rn×n and Φ̃ ∈ R(n+1)×(n+1) be as defined in equation (7.38).

Define Ψ̂ :=

Ψ̃ 0

0 0

. Assume J ∈ R(n+1)×(n+1) to be as defined in equation (7.48).

Then,

F (J)�F (Ψ̂) = F (Φ̃).

Proof: Consider the polynomial ring C[ζ ,η ] and define A := 〈ζ n+1− 1,ηn+1− 1〉. Define
the map Π : C[ζ ,η ] 7→ C[ζ ,η ]/A. Under the action of Π, an element p ∈ C[ζ ,η ] goes to [p].
Note that the Gröbner basis of the ideal A is the set {ζ n+1− 1,ηn+1− 1}. Therefore, any
element in C[x,y]/A, e.g., [p] is uniquely represented by the remainder obtained on dividing p
by ζ n+1−1 and ηn+1−1. From equation (7.38) it is clear that (ζ +η)Ψ(ζ ,η)=Φ(ζ ,η)⇒ 0×
(ζ n+1−1)+0× (ηn+1−1)+Φ(ζ ,η). Therefore, the unique remainder obtained on dividing
(ζ +η)Ψ(ζ ,η) with (ζ n+1−1) and (ηn+1−1) is Φ(ζ ,η), i.e.,

Π((ζ +η)Ψ(ζ ,η)) = Φ(ζ ,η). (7.49)

Since (ζ +η) = XT JY, Ψ(ζ ,η) = XT Ψ̂Y and Φ(ζ ,η) = XT Φ̃Y, from equation (7.49) and
Theorem 7.28, we infer that F (J)�F (Ψ̂) = F (Φ̃). �

From Corollary 7.29, it is evident that the matrix Ψ̂ can be computed using the formula:

Ψ̃ = Ψ̂(1 : n,1 : n) , where Ψ̂ = F−1 (F (Φ̃)�F (J)
)

(7.50)

Note that for the operation �, i.e., element-wise division to be well-defined, every element
of F (J) needs to be nonzero. Therefore, a relevant question to ask here is: when will every
element of F (J) be nonzero. We answer this in the next lemma.

Condition for the operation �, in equation (7.50), to be well-defined.

Lemma 7.30. Let J ∈ R(n+1)×(n+1) be as defined in equation (7.48). Then, F (J) has
every element nonzero if and only if n is even.
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Proof: Let J = [Jp,q]p,q=0,1,...,n and F (J) = [F (J)p,q]p,q=0,1,...,n. Define N := n+1. Then, by
equation (7.6) in Section 7.2.4, we get

F (J)p,q =

n∑
i=0

(
n∑

k=0

Jikω
kp

)
ω

iq = ω
p +ω

q = e− j 2π

N p +e− j 2π

N q

= e− j 2π

N (
p+q

2 )
(
e− j 2π

N (
p−q

2 ) +e j 2π

N (
p−q

2 )
)
= 2cos

(
2π

N

(
p−q

2

))
e− j 2π

N (
p+q

2 ).

It is evident that F (J)p,q = 0 if and only if cos
(2π

N

( p−q
2

))
= 0. Now, cos

(2π

N

( p−q
2

))
= 0 for

any p,q = 0,1, . . . ,N−1 if and only if for any ` ∈ Z,

2π(p−q)
2N

= (2`+1)
π

2
=⇒ p−q =

(2`+1)N
2

. (7.51)

Note that p,q ∈ Z and therefore from equation (7.51), p−q ∈ Z if and only if N is even, i.e., n
is odd. Thus F (J) has every element nonzero if and only if n is even. �

From Lemma 7.30 it is evident that the 2D-DFT method for computation of the storage function
of a lossless system is applicable only for systems with even McMillan degree.

Now that we have presented three methods to compute the Bezoutian corresponding to a
lossless system, we next compare these methods for accuracy and time.

7.7.4 Experimental setup and procedure

Experimental setup: The experiments were carried out on an Intel Core i3 computer at 3.30
GHz with 4 GB RAM using Ubuntu 14.04 LTS operating system. The relative machine preci-
sion is ε ≈ 2.22× 10−16. Numerical computational package SCILAB 5.5 (which, like MAT-
LAB and Python-SciPy, NumPy, relies on LAPACK for core numerical computations) has been
used to implement the algorithms.
Experimental procedure: Randomly generated transfer functions of lossless systems are used
to test the algorithms. Computation time and error for each transfer function order has been
averaged over three different randomly generated transfer functions. To nullify the effect of
CPU delays the computation time to calculate K for each transfer function is further averaged
over hundred iterations.

7.7.5 Experimental results

Computation Time

Figure 7.5 shows a comparison of the time taken by each of the Bezoutian based methods,
viz., Euclidean long division, Pseudo-inverse and 2D-DFT. From the figure it is evident that the
time taken to compute the storage function of a lossless transfer function using Euclidean long
division based method and pseudo-inverse methods are comparable to each other and are much
faster than 2D-DFT.
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Figure 7.5: Plot of computation time versus system’s order.

Computation error

As discussed in Section 7.1, lossless systems satisfy the LME (7.3). In view of this, we define
the error associated with the computation of K as

Err(K) :=

∥∥∥∥∥∥
AT K +KA KB−CT

BT K−C 0

∥∥∥∥∥∥
2

. (7.52)

The matrix K obtained from the above procedures must ideally yield Err(K) = 0. Figure 7.6
shows the error in computation of storage function using the three Bezoutian based methods
discussed above. All the three methods have comparable errors. From the comparison it is clear
that both the Euclidean long division and Pseudo-inverse method are comparable in computa-
tional time and error. Next we present an algorithm to compute the storage function of a lossless
system using the Euclidean long division method. In the algorithm, we use the symbol F(i, :)
to represent the i-th row of a matrix F . The symbol F(1 : n,1 : m) is used to denote a n× m

submatrix of a matrix F with the 1st to nth rows and 1st to mth columns of F .
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Figure 7.6: Plot of error versus system’s order.

Algorithm 7.31 Bezoutian algorithm - SISO.

Input: Transfer function of a lossless system G(s) = n(s)
d(s) of order n where d(s) is monic and

G(s) proper.
Output: K ∈ Rn×n with xT Kx the storage function.

1: Extract coefficients of the polynomials n(s) and d(s) into arrays N ∈ R1×n and D ∈
R1×(n+1) with constant term coefficient first.

2: Equate length of N and D by appending a zero after the last element of N.
3: Compute Bezoutian coefficient matrix using equation (7.38)

Kb := NT D+DT N ∈ R(n+1)×(n+1).

4: Implement the division in first equation of (7.39) by constructing a row vector from the first
row of Kb

Fold :=
[
Kb(1 : 1, 2 : n+1) 0

]
∈ R1×(n+1).

5: Set Fnew := Fold.
6: Append new rows to get Fnew ∈ Rn×(n+1) by implementing the division in (7.39) by the

following iteration:
7: for i=2,. . . , n do
8: r := Kb(i, :)−Fnew(i−1, :)

9: Fnew :=

 Fold

r (1 : 1,2 : n+1) 0


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10: Fold := Fnew

11: end for
12: Define K := Fnew(1 : n,1 : n).

Now, we revisit Example 7.9 and compute the storage function of the system using Algo-
rithm 7.31.

Example 7.32. Recall that the lossless system in Example 7.9 has the transfer function

G(s) =
8s2 +1
6s3 + s

=
8
6s2 + 1

6

s3 + 1
6s

.

Here n= 3 and therefore using Step (1) and Step (2) of the Algorithm 7.31, we have

N =
[

1
6 0 8

6 0
]
, D =

[
0 1 0 1

6

]
.

The i/s/o representation of the system is

d
dt

x =


0 1 0

0 0 1

0 −1
6 0

x+


0

0

1

u, y =
1
6

[
1 0 8

]
x.

Hence, we have Φ(ζ ,η) = n(ζ )d(η)+n(η)d(ζ ) =

1
36

(η +6η
3)︸ ︷︷ ︸

φ0(η)

+(1+8η
2)︸ ︷︷ ︸

φ1(η)

ζ +(8η +48η
3)︸ ︷︷ ︸

φ2(η)

ζ
2 +(6+48η

2)︸ ︷︷ ︸
φ3(η)

ζ
3



=
1

36


1

ζ

ζ 2

ζ 3



T 
0 1 0 6

1 0 8 0

0 8 0 48

6 0 48 0


︸ ︷︷ ︸

NT D+DT N=Kb


1

η

η2

η3



This corresponds to step (3) of Algorithm 7.31. Using the equations (7.39), we have

ψ0(ξ ) =
φ0(ξ )

ξ
=

1+6ξ 2

36
, ψ1(ξ ) =

φ1(ξ )−ψ0(ξ )

ξ
=

2ξ

36

ψ2(ξ ) =
φ2(ξ )−ψ1(ξ )

ξ
=

6+48ξ 2

36

Note that the polynomial subtraction and division shown in these steps can also be done using
corresponding vector shift and subtraction operations. This is implemented with Step (4) to
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Step (10) of Algorithm 7.31. Hence the storage function is

Ψ(ζ ,η) =
1

36
{
(1+6η

2)+2ηζ +(6+48η
2)ζ 2}= 1

36


1

ζ

ζ 2




1 0 6

0 2 0

6 0 48


︸ ︷︷ ︸

K


1

η

η2



7.8 Bezoutian method: MIMO case

In this section we propose an extension of the Bezoutian method for the SISO case to MIMO
case when each of the elements in G(s) are considered to be lossless, i.e., we consider each
element of G(s) to have poles on the imaginary axis. In general the elements of G(s) have the
form given in equation (7.33). However, since we consider each element of G(s) to be lossless
therefore βiv = 0. For such systems, we consider each of the elements in G(s) as lossless
systems and use the procedure described in Section 7.7 to compute the storage function of the
system. We present a theorem next to compute the storage function of MIMO systems with the
Bezoutian method.

Bezoutian method to compute the storage function of a MIMO lossless system

Theorem 7.33. Consider a lossless transfer matrix G(s) with the (i,k)-th element rep-
resented as gik. Recall again that gik has the form of equation (7.33) with βik = 0. The
controller canonical form of each element gik is represented by the triplet (Aik,bik,cik).
Construct matrices Bik ∈ R2×p such that k-th column of Bik := bik and rest entries zero.
Let Cik ∈ Rp×2 be matrices with i-th row of Cik := cik and rest entries zero. Suppose
Kik represents the storage function corresponding to each gik given by Theorem 7.26.
Then (possibly nonminimal) state-space representation of the system G(s) is given by the
following (A,B,C) matrices.

1. A = diag
(
A11,A12, . . . ,A1p,A21, . . . ,App

)
∈ R2p2×2p2

.

2. B = col
(
B11,B12, . . . ,B1p,B21, . . . ,Bpp

)
∈ R2p2×p.

3. C =
[
C11 C12 . . . C1p C21 . . . Cpp

]
∈ Rp×2p2

.

The K matrix that induces the storage function of the lossless system G(s) with respect to
the triplet (A,B,C) is given by K = diag

(
K11,K12, · · · ,K1p,K21, · · · ,Kpp

)
∈ R2p2×2p2

.

Proof: We present the proof for a specific case. The general proof is essentially a book-keeping
version of this simplified case. Consider the transfer matrix of the form

G(s) =

g11(s) g12(s)

g21(s) g22(s)

 :=


α11s

s2 +ω2
α12s

s2 +ω2

α21s
s2 +ω2

α22s
s2 +ω2

 .
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Consider cik(sI−Aik)
−1bik = gik where i,k = 1,2. Construct

A =


A11

A12

A21

A22

 ,B =


b11 0

0 b12

b21 0

0 b22

 , and C =

c11 c12 0 0

0 0 c21 c22

 .

It can be verified that C(sI−A)−1B = G(s).
The storage function corresponding to each gik is Kik. Hence AT

ikKik +KikAik = 0 is satisfied.
Further, bT

ikKik− cik = 0. Construct K = diag(K11,K12,K21,K22). From the construction of A
and K it follows that AT K +KA = 0. Further, it can also be verified that BT K−C = 0. This
proves that K gives the required storage function. �

Note that the K matrix obtained by the method described in Theorem 7.33 is not minimal in
general. This is due the non-minimal state-space representation obtained for the lossless trans-
fer matrix G(s). It is not clear whether a minimal state-space realization is always possible for a
lossless MIMO system with the states of the form given in Section 5.2.1: for more on nonmini-
mality of RLC circuits in general see [BD49, HS14]. This requires further investigation and is
not dealt here.

7.9 Gramian method

In this section we present a method to compute the storage function of a lossless system us-
ing controllability and observability Gramian. As reviewed in Section 7.2.6, the observability
Gramian of a system with an i/s/o representation as given in equation (7.1) is the solution of the
Lyapunov equation AT Q+QA+CTC = 0. For a lossless system since all the eigenvalues of the
system are on the imaginary axis, the solution to the Lyapunov equation AT Q+QA =−CTC is
not unique. Further, for a lossless system the storage function of the system is unique and must
satisfy the equation AT K +KA = 0. Thus, the observability Gramian and the storage function
are not the same for a lossless system. However, in this section we establish that the observabil-
ity Gramian of a suitable allpass system reveals the storage function of a lossless system.

At the every outset of this section, we present a theorem that establishes the link between
allpass systems, and Gramians.

Observability Gramian of an allpass system is its storage function

Theorem 7.34. Consider a stable, allpass system with a minimal i/s/o representation as
given in equation (7.1). Assume Q ∈Rn×n to be the observability Gramian of the system.
Then, xT Qx is the unique storage function of the system.

Proof: We know that for an allpass system there exists a K ∈Rn×n that satisfies equation (7.13).
Since the system is stable, the equation AT K+KA+CTC = 0 must have a unique solution. Note
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that AT K +KA+CTC = 0 is the observability Gramian equation. Therefore, K = Q. Hence,
we conclude using equation (7.13) that xT Qx is a unique storage function of the system. �

For an allpass system, the observability Gramian Q and controllability Gramian P are related as
PQ = In: see [Glo84, Theorem 5.1]. Hence, the matrix P−1 also induces the storage function
associated with an allpass system. The next result uses the concept of balanced basis to infer a
noteworthy property of the storage function of an allpass system.

The storage function of an allpass system is induced by an identity matrix

Theorem 7.35. Consider a stable, allpass system with a transfer function G(s) ∈
R(s)p×p. Let the minimal state-space realization of the system be in a balanced state-
space basis. Let the storage function in the balanced state-space basis be K = KT ∈
Rn×n. Then K = In.

Proof: Let the observability and controllability Gramian in the balanced state-space basis be
Wo and Wr, respectively. By the definition of balanced state-space basis, we have Wo =Wr =W .
Since G(s) is allpass, using Proposition 7.5, we have WoWr = In =⇒ W 2 = In. Further, since
G(s) is stable, we have W > 0. Therefore, W = In. Thus, using Theorem 7.34, we conclude that
the storage function of the allpass system is In. �

Now that we have established a few of the properties of the storage function of an allpass
system, we establish the link between the storage function of a lossless system and an allpass
system. In order to do so, we first show the link between storage functions of a bounded-real
system and its passive counterpart.

Storage function of a bounded-real system and its passive counterpart is the same

Theorem 7.36. Consider a controllable, bounded-real system Σbr with input-output vari-
ables (u,y). Suppose Σpas is the passive counterpart of Σbr. Then, the set of storage
functions of Σbr and Σpas remains invariant.

Proof: Since Σpas is the passive counterpart of Σbr, the input and output variables of Σpas are
v := u+y√

2
and r := u−y√

2
, respectively. Note that for controllable systems the storage function is

xT Kx, where x is the state-vector of the system Σbr and K = KT ∈ Rn×n. Hence, we have

d
dt
(xT Kx)6

u

y

T Ip 0

0 −Ip

u

y

=
1
2

u

y

T

JT

0 Ip

Ip 0

J

u

y

 , where J :=

Ip Ip

Ip −Ip


⇒ d

dt
(xT Kx)6

u+y√
2

u−y√
2

T 0 Ip

Ip 0

u+y√
2

u−y√
2

=

v

r

T 0 Ip

Ip 0

v

r

 . (7.53)

Inequality (7.53) is the dissipation inequality of the system Σpas. Hence, xT Kx is a storage
function of the system Σpas. Therefore, K is a storage function of Σpas. Along similar lines, it
can be shown that any K that induces a storage function for Σpas is a storage function of Σbr, as
well. This proves that the set of storage function for Σbr and Σpas remains invariant. �
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Note that the passive counterpart of an allpass system Σall with transfer function G(s) is a
lossless system Σloss with transfer function [1 − G(s)][1 + G(s)]−1. Hence, we call Σloss

the lossless counterpart of Σall and Σall the allpass counterpart of Σloss. The next corollary
relates the storage function of an allpass system and its lossless counterpart.

Observability Gramian induces the storage function of an allpass/lossless system

Corollary 7.37. Consider a lossless system Σloss with a minimal i/s/o representation as
in equation (7.1). Let the bounded-real counterpart of Σloss be Σall. Assume Q to be the
observability Gramian of Σall corresponding to the minimal i/s/o representation (7.12).
Then, xT Qx is the unique storage function of Σloss.

Proof: From Theorem 7.34, we know that the observability Gramian Q induces the storage
function of Σall. Since Σloss is the lossless counterpart of Σall, from Theorem 7.36 we know
that the storage function of Σall and Σloss are the same. Therefore, xT Qx is the unique storage
function of Σloss. �

Thus, we have a method to compute storage function of a lossless system using Gramian. We
revisit the example in Example 7.9 to illustrate this method.

Example 7.38. For the transfer function G(s) in Example 7.9, the allpass counterpart has the
following transfer function 1−G(s)

1+G(s) =
6s3−8s2+s−1
6s3+8s2+s+1 . Corresponding to the i/s/o representation of

the lossless system in equation (7.16), the minimal i/s/o representation of its allpass counterpart
computed using equation (7.12) and the fact that D = 0 is given by the following equation:

d
dt

x = (A−BC)x+
√

2B
(

u+ y√
2

)
, and

(
u− y√

2

)
=−
√

2Cx, i.e. ,

d
dt

x =


0 1 0

0 0 1

−1
6 −1

6 −8
6

x+
√

2


0

0

1


(

u+ y√
2

)
,

(
u− y√

2

)
=−
√

2
[
−1

6 0 −8
6

]
x+
(

u+ y√
2

)
.

The observability Gramian for the system in the equation above is

Q =
1

18


1 0 6

0 2 0

6 0 48


It can be easily verified that Q is indeed the storage function of the lossless system, since it
satisfies the KYP LME (7.41).

Therefore, the algorithm to compute storage function of a lossless system using Gramian
is as follows:



196 Chapter 7. Storage functions of lossless systems

Algorithm 7.39 Gramian balancing method based algorithm.

Input: A minimal i/s/o representation (A,B,C) of the lossless system.
Output: K ∈ Rn×n with xT Kx the storage function.

1: Compute Abr := A−BC, Bbr =
√

2B and Cbr =−
√

2C.
2: Solve AT

brQ+QAbr+CT
brCbr = 0 to find the observability Gramian Q ∈ Rn×n.

3: The storage function of the system is K = Q.

7.10 Comparison of the methods for computational time and
numerical error

Using the experimental setup and procedure described in Section 7.7.4, we compare the com-
putational performance of the Algorithms 7.10, 7.16, 7.19, 7.31, and 7.39 in this section.
Computation time: The plot in Figure 7.7 shows the time taken by each algorithm to compute
the matrix K for lossless systems of different orders. The controllability matrix method, the
Bezoutian method, and the Gramian method take relatively less computation time compared to
MPB method.
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Figure 7.7: Plot of computation time versus system’s order.

Computation error: Error in K is computed using equation (7.52) and is plotted for compar-
ison. We calculate Err(K) for test cases used above for computation time. Figure 7.8 shows a
comparison of the error associated in the computation of K using the five algorithms presented
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Figure 7.8: Plot of error residue versus system’s order.

in this chapter. The error has been plotted in the logarithmic scale for better comparison of data.
From the plot we infer that Bezoutian method and partial fraction method is marginally better
than the other three methods.

From the plots it is evident that the MPB method is not efficient in spite of using efficient
and stable algorithm for the computation of nullspace basis of a polynomial matrix. A probable
reason for this is as follows. The MPB method is based on finding minimal polynomial basis of
the polynomial matrix R(s). The algorithm of finding the minimal polynomial basis, as reported
in [KPB10], is an iterative algorithm and is based on writing the matrix R(s) as

∑d
i=0 Risi and

then using the co-efficient matrices Ri to form Toeplitz matrices at each iteration. Consider the
matrices Ri have size N× N, rank col(R0,R1, . . . ,Rd) =: r0 and the iteration step is t then the
Toeplitz matrix will have a size (d+ 1+ t)r0× (r0 + rt−1). At each iterations, singular value
decomposition (SVD) of such augmented matrices needs to be computed to find the minimal
polynomial basis of R(s). Hence, the algorithm being iterative and the large size of the aug-
mented matrix results in more error and computation time. Further, the operation of finding
minimal basis is done twice in Algorithm 7.4 and this also adds to the error and computation
time.
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7.11 Summary

In this chapter we dealt with the computation of the stored energy in a lossless system. We pre-
sented five different conceptual methods to compute the unique storage function for a lossless
system.

1. Controllability matrix method: In this method, we showed that the algorithm to compute
storage function of a singularly passive SISO system (Algorithm 5.16) can be used to com-
pute the storage function of a lossless system as well. This method is based on the inversion
of the controllability matrix of the lossless system.

2. Minimal polynomial basis (MPB) method: In this method, we showed that for a lossless
system the states and costates of a system satisfies the algebraic relation z = Kx, where K is
the storage function of the lossless system (Theorem 7.11). Using these algebraic relations,
we developed an algorithm to compute the storage function of a lossless system (Theorem
7.14 and Algorithm 7.16).

3. Partial fraction method: This uses Foster/Cauer method (Theorem 7.17 and Theorem 7.23)
and capacitor voltages & inductor currents as states.

4. Bezoutian method: (Theorem 7.26) States corresponding to controller canonical form are
used in this method. Three different techniques are presented to compute the Bezoutian of
such systems, viz., Euclidean long division, Pseudo-inverse, and 2D discrete Fourier trans-
form.

5. Controllable/Observable Gramians balancing method: (Theorem 7.35). In this method we
showed that the observability Gramian of the allpass counterpart of a lossless system is the
storage function of the lossless system (Theorem 7.35).

From the comparisons among the different methods, based on computational time and compu-
tational error, it is evident that the Bezoutian, partial fraction and controllability matrix method
are better. Note that in this chapter we did not perform a thorough investigation of the algorith-
mic aspects of the methods presented. This is a future direction of work that arises out of this
chapter. However, we indicate our preliminary observations in this regards next.

The choice of the storage function computation method for a lossless system depends on
the system description: for example transfer function or state-space. Loosely speaking, a few
of the key factors that help in the choice of the algorithm are

1. Ability to diagonalize the system matrix A using a well-conditioned matrix (i.e., the so-
called ‘departure from normality’)7.

2. Extents of uncontrollability/unobservability.

7A matrix A ∈ Rn×n is called normal if AAT = AT A.
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3. McMillan degrees of the elements in the transfer matrix.

Partial fraction expansion algorithm is about ‘summing’ over terms, this algorithm is
favourable for a system whose transfer function is obtained as a ‘sum’-of-parallel blocks (see
[Kai80, Section 2.1.3]). Further, for a system whose system matrix A is normal the similar-
ity transform matrix S that diagonalizes A is well-conditioned (see [Loi69] and also [GL12,
P7.2.3]). Hence for such systems, use of partial fraction based method is suitable. Bezoutian
algorithm is best suited for systems whose matrix A is non-diagonalizable: this is due to non-
diagonalizability being linked to a chain-of-‘integrators’ type of interpretation. Hence systems
with controller canonical forms and with A matrices not diagonalizable are candidates for this
algorithm. Controllability matrix method uses inversion of the controllability matrix for com-
putation of the storage function. Hence this method is not favourable for systems which are
“nearly uncontrollable” as this will result in inversion of an ill-conditioned matrix. The MPB
algorithm is favourable for systems where the McMillan degree of the system is much higher
than the degrees of the denominators of the transfer matrix of the system (this is especially
relevant, in general, for MIMO systems). For such systems, the nullspace of the matrix R(s) in
Algorithm 7.4 will have a smaller degree and this will result in less computational effort and less
error in the computation of K. Hence given a MIMO system realization which has neither the
sum-of-parallel blocks form nor the controller canonical form, the MPB method is favourable.





Chapter 8

Conclusion and future work

In this chapter we summarize the contributions of this thesis and present a few future directions
of the results arising out of the thesis.

8.1 Contributions of the thesis

In this thesis we developed a generalized Riccati theory using the notion of Hamiltonian sys-
tems. This led to interesting system-theoretic interpretations in terms of the LQR LMI and KYP
LMI solutions. The following is a list of our findings in this context.

8.1.1 Singular LQR problems

The contributions of this thesis in the area of singular LQR problems are as follows:
Algorithm to compute the maximal solution of an LQR LMI: We provided a method to
compute the maximal solution of the LQR LMI corresponding to a singular LQR problem with
the underlying system admitting a single-input (Theorem 2.30). We showed that the maxi-
mal solution minimizes the rank of the LQR LMI, as well. To this end, we characterized the
fast (strongly reachable) and slow (weakly unobservable) subspaces of a single-input system in
terms of its Rosenbrock matrix (Theorems 2.24 and 2.25). We showed that in order to compute
the maximal solution of an LQR LMI we need to use the basis of the good subspace of the
weakly unobservable space corresponding to a Hamiltonian system and the basis of a suitably
chosen subspace of the strongly reachable subspace of the Hamiltonian system.

Characterization of the optimal trajectories of an LQR problem: Using the maximal
solution of an LQR LMI, we characterized the optimal trajectories of a single-input system
corresponding to a singular LQR problem (Lemma 3.6, Lemma 3.7 and Theorem 3.9). Such
a characterization revealed that a singular LQR problem not only admits exponential optimal
trajectories but also impulsive ones.

201



202 Chapter 8. Conclusion and future work

Static state-feedback controllers generically cannot solve a singular LQR problem: It
is known in the literature that a singular LQR problem admits a static state-feedback controller
if and only if it admits a solution to the corresponding CGCARE. Hence, we formulated a few
necessary and sufficient conditions for the solvability of CGCARE (Theorem 4.8). Using these
conditions, we inferred that a CGCARE corresponding to a singular LQR problem is generi-
cally unsolvable (Theorem 4.22). Hence, we showed that a singular LQR problem generically
cannot be solved using a static state-feedback. This led to the natural question: Is there a feed-
back policy that solves a singular LQR problem?

Almost all singular LQR problems admit PD state-feedback controllers: We showed that
almost all singular LQR problems corresponding to single-input systems can indeed be solved
using proportional-derivative (PD) state-feedback controllers (Theorem 3.12). We presented a
method to design these state-feedback controllers using the method that we developed to com-
pute the maximal solution of an LQR LMI corresponding to a singular LQR problem. The
only assumption that we made here is that the Hamiltonian matrix pair does not have any finite
eigenvalue on the imaginary axis. This assumption is true for almost all A,B,C matrices.

8.1.2 Passive systems

The contributions of this thesis in the area of passivity theory are as follows:
Algorithm to compute rank-minimizing solutions of a KYP LMI: We provided an algorithm
to compute the rank-minimizing solutions (also known as storage functions) of the KYP LMI
corresponding to a singularly passive SISO system (Theorem 5.7). This method is analogous
to the one we proposed to compute the maximal solution of the LQR LMI corresponding to a
singular LQR problem. Further, we also showed that the method we proposed to compute the
rank-minimizing solutions of a KYP LMI corresponding to a singularly passive SISO system
can also be used to compute the maximal and minimal solutions of such an LMI (Theorem 6.7).

Characterization of the lossless trajectories of a singularly passive SISO system: We
characterized the lossless trajectories of a singularly passive SISO system using the method to
compute the rank-minimizing solutions of the KYP LMI corresponding to a singularly passive
SISO system (Theorem 6.6 and Table 6.1). We showed that if the initial conditions of the system
are confined to the space of regular initial conditions, then the lossless trajectories are exponen-
tial in nature (Lemma 6.4). On the other hand, if the initial conditions are from the space of
irregular initial conditions, then the lossless trajectories are impulsive in nature (Lemma 6.5).
It is important to note that the physical interpretation of a fast lossless trajectory is not known.
We introduced such trajectories in this thesis in a formal setting only. Nevertheless, similar to
the singular LQR case, we presented a method to design state-feedback controllers that confine
the system-trajectories to its lossless trajectories (Theorem 6.16).
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Algorithms to compute the storage function of a lossless system: Apart from singularly
passive systems, we also presented algorithms to compute the storage functions of a special
class of passive systems called the lossless systems. We presented five different conceptual
methods to compute the unique storage function of a lossless system, viz.,

Controllability matrix method: This method is based on Algorithm 5.16 used to com-
pute rank-minimizing solutions of the KYP LMI corresponding to a singularly passive
SISO system (Theorem 7.8 and Algorithm 7.10).

MPB method: In order to develop this method, we showed that a lossless system ad-
mit algebraic relations between its states and the corresponding costates (Theorem 7.11).
We used these relations to develop an minimal polynomial based (MPB) algorithm to
compute the storage function of a lossless system (Theorem 7.14 and Algorithm 7.16).

Partial fraction method: We also developed a method to compute the storage function
of a lossless system using partial fractions of the transfer function matrix (Theorem 7.17,
Algorithm 7.19, Theorem 7.23, and Algorithm 7.24).

Bezoutian method: It is known in the literature that the storage function of a lossless
SISO system is related to the Bezoutian obtained using the numerator and denominator
of the corresponding transfer function. We presented three methods to compute the stor-
age function of lossless systems using the Bezoutian. The first of these methods used
Euclidean long division algorithm (Section 7.7.1 and Algorithm 7.31) to compute the
Bezoutian and hence the storage function of a lossless system. In the second method,
we used the notion of pseudo-inverse to compute the solution to a set of linear equation
that eventually led to the storage function of a lossless system (Section 7.7.2). The last
method used to compute the storage function of a lossless system using Bezoutian is that
of 2D-DFT (Section 7.7.3), albeit for even order system only. For the MIMO case, how-
ever we presented a method that is applicable only for the case when all the elements of
the transfer matrix are lossless.

Gramian method: We showed that the storage function of a lossless system is the same
as that of its allpass counterpart. Further, using the fact that the storage function of an
allpass system is given by its observability Gramian (Theorem 7.34), we developed a
method to compute the storage function of a lossless system using Gramians (Corollary
7.37). Interestingly, the storage function of an allpass system if its i/s/o representation is
in a balanced basis is induced by an identity matrix (Theorem 7.35).

From the findings in Part-I and Part-II of the thesis it is evident that there are parallels between
the results on singular LQR problems and singularly passive SISO systems; we present a table
(Table 8.1) next that highlights these parallels.
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Results
Part-I

Singular LQR problems

Part-II

Singularly passive system

Rank-minimizing solution of dissipation LMI

(Maximal solution in case of LQR LMI)
Theorem 2.30 Theorem 5.7

Algebraic relations satisfied by solutions

of the dissipation LMI
Lemma 2.37 Lemma 6.8

Maximal gap of the solutions of the dissipation

LMI satisfies a Lyapunov equation
Lemma 2.38 Lemma 6.9

Slow optimal/lossless trajectories of the system Lemma 3.7 Lemma 6.4

Fast optimal/lossless trajectories of the system Lemma 3.6 Lemma 6.5

Optimal/lossless trajectories of the system Theorem 3.9 Theorem 6.6

PD-controllers for confinement of system

trajectories to the optimal/lossless ones
Theorem 3.12 Theorem 6.16

Table 8.1: A table to demonstrate the analogous results in Part-I and Part-II of the thesis.

8.1.3 The generalized Riccati theory

From Table 8.1 it is evident that the main results in Part-I and Part-II of the thesis are analogous.
All the results in Part-I and Part-II applied to the special case when the feed-through regularity
term is satisfied, i.e., when ARE exists, corroborate the existing results on AREs. The results in
Part-I and Part-II not only provide a method to compute solutions of the respective dissipation
LMIs but also lead to a generalization of certain system-theoretic notions already present in
the literature for the regular case. Hence, we have a generalized Riccati theory developed using
Hamiltonian systems and its properties. Another class of systems that admit an ARE is the class
of bounded-real systems (see Section 7.2.5 for definition). These systems admit a dissipation
LMI, called the bounded-real LMI, of the form given in equation (7.9). The feed-through term
corresponding to such an LMI is I −DT D. In this thesis we did not explicitly develop the
theory for the singular case of such systems, i.e., bounded-real SISO systems with I−DT D = 0.
However, from Theorem 7.36 it is evident that a bounded-real SISO system with I−DT D = 0
can always be transformed to its passive counterpart with D+DT = 0. Further, the storage
functions of the bounded-real system and the corresponding passive system remains the same
during such a transformation (Theorem 7.36). Hence, the theory of singularly passive SISO
systems developed in the thesis is directly applicable to their bounded-real SISO counterparts,
as well. Further, using the same line of reasoning as presented in Part-II of the thesis and
tweaking the matrices Â, b̂ and ĉ used in Part-II, the theory developed in Part-II can be directly
extended to the bounded-real case, as well. We did not explicitly develop this theory in the
thesis to avoid repetition. We present a table next that shows the structure of the matrices Â, b̂
and ĉ corresponding to singular LQR problems, singularly passive system and the singular case
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of bounded-real systems.

Problem/System Â b̂ ĉ

Singular LQR problem for single-input case

 A 0

−Q −AT

  b

0n,1

 [
0 bT

]

Singularly passive SISO systems

A 0

0 −AT

  b

cT

 [
c −bT

]

Bounded-real SISO systems with I−DT D = 0

 A 0

−cT c −AT

  b

−cT

 [
−cT −bT

]

8.2 Future work

The results presented in this thesis can be extended in different directions. We list a few of these
directions next.
Extending the theory to MIMO systems: Most of the main results presented in this thesis are
for single-input or single-input single-output systems as the case may be. A natural extension
of this work would be to extend the results in this thesis to the multi-input or multi-input multi-
output case.

Relaxation of the condition σ(E,H)∩ jR: Most of the results in this thesis assumes that
the eigenvalues of Hamiltonian matrix pair are not on the imaginary axis. For an LQR problem
such a condition needs to be assumed to guarantee convergence of the performance index. How-
ever, for singularly passive systems no such guarantee on convergence is required. Although the
condition σ(E,H)∩ jR is generically true for passive systems, relaxing this condition would
result in a complete Riccati theory for passive systems.

Fast lossless trajectories: The notion of fast lossless trajectories have been introduced in
Chapter 6 in a formal setting only. The physical interpretation of such trajectories is a matter of
future research.

Generalized theory of model-order reduction: In large scale systems, the system dimen-
sion makes computational analysis infeasible due to memory and time limitations. One of the
approaches present in the literature to mitigate this problem is the notion of model reduction.
The goal is to produce a low dimensional system with similar characteristics to the original
one such that the computational analysis becomes less expensive. Some of the widely known
methods of model order reduction like the stochastic balancing method, bounded real balancing
method, etc. uses ARE solutions to obtain a lower order model [Gre88], [Sor05]. Hence, a nat-
ural shortcoming of these methods is that they can not be used to reduce the order of a system
that does not admit an ARE. Since the theory developed in this thesis deals with such systems,



206 Chapter 8. Conclusion and future work

the existing ARE based model order reduction methods can be generalized to systems that do
not admit AREs.

Thus, in this thesis, we have presented a complete generalized Riccati theory for single-
input LQR problems. Similarly, we have provided a complete generalized Riccati theory for
passive systems, with the exception of systems that admit Hamiltonian systems with imaginary
axis eigenvalues. We present a figure next that demonstrates the work we completed in this
thesis and the knowledge gap still left in the literature after our contribution.

Singular LQR problems

Multi−input

Single−input

Passive systems

MIMO

SISO

Not solved

Solved

Solved

σ(E,H)∩ jR 6= /0

σ(E,H)∩ jR= /0

Figure 8.1: Works completed in this thesis and future directions.
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