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Abstract

The primary objective of this thesis is to put forth a generalized Riccati theory that is applicable
not only to problems/systems that admit algebraic Riccati equation (ARE) but also to prob-
lems/systems that do not admit AREs due to singularity of certain matrices. To achieve this we
use a more fundamental object than the AREs. We use the linear matrix inequalities (LMIs)
from which AREs are known to arise; we call these LMIs the dissipation LMIs. The primary
reason for using these LMIs is the fact that their existence do not depend on the nonsingularity
of any matrices. Primarily, we deal with two typical applications in this thesis where AREs do
not exist but the dissipation LMIs do, viz., a singular linear quadratic regulator (LQR) prob-
lem with the underlying system having a single-input and a passive SISO system with a strictly
proper transfer function. We call the dissipation LMI corresponding to a singular LQR problem
the LQR LMI and the one corresponding to a passive SISO system the KYP LMI. In order to
achieve our objective, we first show that the maximal and rank-minimizing solutions of the LQR
and KYP LMI, respectively can be computed by an extension of a conventional Hamiltonian
based method used to solve these LMIs for the case when they admit AREs. This extension
comes in the form of compensating the eigenspaces of a suitable matrix pencil by adding new
basis vectors coming from a subspace of the strongly reachable space corresponding to the
underlying Hamiltonian system. This straightaway leads to interesting system-theoretic inter-
pretations in terms of the dissipation LMI solutions. Using the method to compute the maximal
solution of an LQR LMI, we not only show that almost every (made precise in a suitable topol-
ogy) singular LQR problem can be solved using a proportional-derivative (PD) state-feedback
controller, but also provide a method to design such controllers. To this end, we also charac-
terize the optimal trajectories of a singular LQR problem corresponding to an arbitrary initial
condition. We show that, similar to the singular LQR case, a passive SISO system with proper
transfer function can be confined to its lossless trajectories using PD state-feedback controllers.
Apart from these, we also present algorithms to compute the solutions of KYP LMIs admitted
by a special and very familiar class of passive systems called lossless systems (ARE does not
exist for these too). These algorithms are designed using different notions of control theory and
network theory like states and costates of a system, Foster-Cauer network synthesis methods,

two-dimensional discrete Fourier transform, observability and controllability Gramian.
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Chapter 1
Introduction

The emergence of algebraic Riccati equation (ARE) in quadratic optimal control and dissipa-
tivity theory has been one of the cornerstones in control theory [Kal60], [Wil71], [TW91]. The
elegant theoretical framework of ARE combined with numerically stable algorithms for com-
putation of ARE solutions are perhaps the primary reasons for the widespread application of
ARE in control and system theory [LR95], [KTK99], [BS13]. From the literature on AREs, it
is known that an ARE always arises from a linear matrix inequality (LMI); we call these LMIs
the dissipation LMIs for ease of reference [LR95]. Nonsingularity of certain matrices, depend-
ing on the application (e.g. D+ DT in case of passive systems), is crucial for the reduction of
these dissipation LMIs to their corresponding AREs. We call such matrices the feed-through
terms and the condition of nonsingularity of these matrices the feed-through regularity con-
dition. Interestingly, unlike AREs, existence of a dissipation LMI does not depend on the
feed-through regularity condition. Hence, there are systems/problems where an ARE does not
exist, due to non-satisfaction of the feed-through regularity condition, but the dissipation LMI
does. Thus, the fundamental object in any analysis that involves an ARE is not the ARE itself
but the dissipation LMI from which such an ARE arises. Since the theory developed for AREs
crucially hinges on the feed-through regularity conditions, the application of AREs are limited
to systems/problems that satisfy these conditions. Hence, there is a natural need for a common
theoretical framework that generalizes the theory of AREs to the dissipation LMIs such that
the generalized theory no longer has to depend on the feed-through regularity condition. In
this thesis, we bridge this gap between the ARE literature and the dissipation LMIs. Typical
examples of systems/problems where the AREs do not exist, but the dissipation LMIs do, are
the singular linear quadratic regulator (LQR) problems and passive single-input single-output

(SISO) systems that admit strictly proper transfer functions. We divide the thesis into two parts:
I. Infinite-horizon singular LQR problems,
II. Passive systems.

One of the salient features of the solutions of an ARE is the fact that such solutions have el-

egant system-theoretic interpretations. For example, in an infinite-horizon LQR problem, it is

1



2 Chapter 1. Introduction

known that the maximal solution of the corresponding ARE helps in characterizing the optimal
trajectories of the system [KirO4]. Further, such a solution also leads to the design of the state-
feedback controller that solves the corresponding LQR problem. Similarly, in passive systems,
the solutions of the corresponding ARE is related to the notion of optimal-charging and optimal-
discharging of the system [WT98]. Hence, while bridging the gap between the ARE literature
and the dissipation LMIs it is important that we generalize these system-theoretic interpreta-
tions in terms of the dissipation LMI solutions. To this end we not only put forth a generalized
Riccati theory but also provide methods to design feedback-controllers to solve infinite-horizon
singular LQR problems and confine passive systems to their optimal charging/discharging tra-
jectories.

1.1 A brief literature survey

In this section we present a brief literature survey of the problems we are dealing with in this
thesis. A more detailed literature survey is done in the beginning of each chapter of the thesis

based on the objective of each chapter.

1.1.1 Infinite-horizon singular LQR problems
The objective of an infinite-horizon singular LQR problem is as follows:

Problem 1.1. (Singular LQR problem) Consider a system ¥ with state-space dynamics %x =
Ax+ Bu, where A € R**®, B € R**™. Then, for every initial condition xo € R, find an input u

that minimizes the functional

T
“lx S

S
R] > 0 and R is singular.

x] dt, (1.1)
u

where [SQT
Since in this thesis we deal with infinite-horizon singular LQR problems only, we drop
the term infinite-horizon in the sequel. A typical example of a singular LQR problem is the

minimization of energy associated with a damped spring-mass system.

Example 1.2. Consider a damped spring-mass system as in Figure 1.1 with m, g, c, k, and
u being the mass, displacement of mass, coefficient of viscous friction, spring constant, and
applied force, respectively. On using (py, p2) as states, where p| := q and p; := q, the dynamics

of the system is given by the following state-space equation:
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Figure 1.1: A damped spring-mass system

Then, for every initial condition xo € R, find an input u that minimizes the total energy of

the system, i.e, find u that minimizes the functional

T
“ /1 1 | kK 0
J(xo,u):/ (Ekp%—l—imp%) dt:i/ [p1] [ ] [pll dt. (1.2)
0 0 p2| |0 m| |p2

Note that there is no cost associated with the applied force (R = 0) in equation (1.2).

Another area in which singular LQR problems naturally arise is that of cheap control
problems, i.e., problems where the cost of the control u is cheap relative to that of the state x.

In such problems the cost functional is of the form:
J(xo,u) := / (xT Ox+ ezuTRu) dt,
0

where Q > 0, R > 0 and € is a small positive parameter. Evidently, singular LQR problems are
a limiting case (¢ — 0) of cheap LQR problems [HS83, Comment 2.12], [SS87]. The singular
LQR problem, therefore, becomes relevant in any design problem that uses cheap control, in
order to predict its limiting behavior. Such design problems can be pole-positioning problems
([AM71] [KS72]), inverse-regulator problems ([MA73]), differential games ([Pet86]) among
other control applications.

It is noteworthy that for the case when the LQR Problem 1.1 has R > 0, called the regular
LOR problem, an ARE of the form ATK + KA+ Q — (KB4 S)R™'(B"K + ST) = 0 exists and
a suitable solution of this ARE is used to design static state-feedback controllers to solve the
problem. However, in [HS83] the authors showed that for a singular LQR problem the inputs
that minimize equation (1.1), called optimal inputs, are impulsive in nature and hence cannot
be implemented by a static state-feedback control law. Following this work, the authors in
[WKS86] provided a method, based on Morse’s canonical form, to compute the optimal inputs
for the singular LQR Problem 1.1 and alluded to the fact that such inputs can be implemented
using high-gain feedback controllers. Another interesting work in [Sch83] established a link
between the optimal cost of a singular LQR problem and the maximal solution, among all
rank-minimizing solutions, of the corresponding dissipation LMI. In this thesis, we call such
a solution the maximal rank-minimizing solution of the corresponding dissipation LMI. Some
other areas in which work related to the singular case has been done in the past are singular
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spectral-factorization in [CF89], singular H, control in [St092], singular H, and H. control
in [CS92], etc.. There has been interesting work in this area in the recent years, as well. In
[KBC13] the authors showed that singular LQR problems, under suitable assumptions, can
be solved by proportional-derivative controllers. On the other hand, in [FN14], [FN16] and
[FN18] the authors established that some singular LQR problems can be solved using static
state-feedback. However, the results present in the literature, to the best of our knowledge,
neither provide a method to solve a singular LQR problem using state-feedback in general nor
links the solutions of the dissipation LMI that arises in such a problem to the optimal input that
solves the problem.

1.1.2 Passive systems

A passive system with a minimal input-state-output (i/s/0) representation of the form %x =
Ax+ Bu and y = Cx + Du 1s known to admit solutions to the LMI arising out of the Kalman-
Yakubovich-Popov (KYP) lemma [Kal63], [Yak62], [Pop64]:

ATK+KA KB-CT

B'Kk—-C —(D+DT) (13

These solutions are known in the literature as the storage functions of the system due to their
link to stored energy of the system [WT98]. We call the inequality (1.3) the KYP LMI for the
ease of reference. Those passive systems that satisfy D + DT > 0, the feed-through regularity
condition here, therefore admit an ARE: ATK + KA+ (KB —CT)(D+D")"'(BTK - C) = 0.
However, there is a large class of passive systems that do not admit such an ARE but does admit
an KYP LMI of the form in inequality (1.3). A typical example of such a system is an RLC
network.

Example 1.3. Consider the RLC network given in Figure 1.2. On using (v¢,ir) as states, where
Ve IS the capacitor voltage and iy is the inductor current, the state-space dynamics of the system

is given by:
R L C
oM
+
% iL ve
i= [o 1] [V_C] 0
i

Figure 1.2: An RLC circuit
Note that the RLC network in Figure 1.2 does not admit a feedthrough term, i.e, D =0 and
hence, it does not admit an ARE.

Recently, it has been shown in [Reil 1] that using the notion of deflating subspaces on a
suitable matrix pencil it is possible to compute special solutions of the LMI (1.3). In [RRV15]
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the authors further generalized this idea to differential-algebraic systems, as well. It is note-
worthy that the idea of using deflating subspaces to compute solutions of dissipation LMIs
was introduced in [vD81]. Importantly, the idea of deflating subspaces provide a generalized
framework for solving dissipation LMIs of the form (1.3) and the ones arising in singular LQR
problems. However, there is no literature available, to the best of our knowledge, as to how
these deflating subspaces can be linked to trajectories of the system or design state-feedback

strategies to solve a problem like the one in Problem 1.1.

1.2 Contributions and outline of the thesis

Based on the application that we are dealing with, the entire thesis is divided into two parts.
The first part is dedicated to singular LQR problems and the second to storage functions of
passive SISO systems that do not admit AREs. Although there are two parts to the thesis there
is common underlying theory that we develop throughout the thesis. We string it all together in
the final chapter, Chapter 8, of the thesis to arrive at a generalized Riccati theory. Most of the
results in this thesis are for single-input (in the singular LQR case) or single-input single-output
(in the passivity case) systems, unless mentioned otherwise.

Now that we have a clear idea about the organization of the thesis, we present the main
objectives and contributions of each of the chapters next. Part-I of the thesis consists of Chapters
2 - 4 and Chapters 5 - 7 form Part-II of the thesis.

Chapter 2: Computation of the optimal cost of an LQR problem is known to depend

on the maximal rank-minimizing solution of the corresponding LMI. Hence, our objective is
to provide a method to compute the maximal rank-minimizing solution of the LMI arising in a
singular LQR problem.
Contribution: We present a method to compute the maximal rank-minimizing solution of the
dissipation LMI that arises in a singular LQR problem. We show that one of the methods, based
on Hamiltonian systems, to compute the maximal rank-minimizing solution of a dissipation
LMI that admits ARE can indeed be extended to work for the singular case. We achieve this
by substituting the role of the eigenspace involved in the computation of the maximal rank-
minimizing solution of an LQR LMI by certain subspaces, namely weakly unobservable (slow)
and strongly reachable (fast) subspaces, of the Hamiltonian system. To this end we present a
novel characterization of the slow and fast subspaces of a SISO system in terms of certain matrix
pencil. The theory developed in this chapter lays the foundation of the theoretical framework
that generalizes the theory of AREs to dissipation LMIs.

Chapter 3: Solution of a regular LQR problem using static state-feedback is known to be
possible. However, a state-feedback control law to solve a singular LQR problem is not known,
in general. Hence, our objective is to find a state-feedback control law that solves the singular
LQR problem.

Contribution: Using the theory developed in Chapter 2, we establish that almost every infinite-

horizon LQR control problem with single-input admits an optimal solution in the form of a
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feedback that is a suitable constant linear combination of the state and its first derivative, a PD
(proportional plus derivative) state-feedback. The only assumption that we make is that a suit-
able matrix pair does not admit any eigenvalues on the imaginary axis. The theory developed in
this chapter provides a system-theoretic interpretation to the maximal rank-minimizing solution
of the dissipation LMI that arises in a singular LQR problem.

Chapter 4: It has been shown in the literature that solvability of the constrained general-
ized continuous algebraic Riccati equation (CGCARE) is a necessary and sufficient condition
for a singular LQR problem to admit a solution that is implementable as a static state-feedback
control law. Hence, our objective is to find conditions for the solvability of CGCARE.
Contribution: We provide a set of necessary and sufficient conditions for the solvability of a
CGCARE. Using these conditions we show that a CGCARE generically does not admit solu-
tions. This further leads to the conclusion that a singular LQR problem generically disallows
solution by a static state-feedback law. The theory developed in this chapter shows that almost
all singular LQR problems cannot be solved using static state-feedback controllers. Hence, in
order to solve such problems we need to use PD-controllers that we designed in Chapter 3.

Chapter 5: The objective of this chapter is to provide an algorithm to compute the rank-

minimizing solutions of a KYP LMI corresponding to a passive SISO system, for the case when
the system does not admit an ARE. Such solutions of the KYP LMI are also known as the stor-
age functions of the system. We call passive SISO systems that do not admit AREs and have no
poles and zeros on the imaginary axis singularly passive SISO systems.
Contribution: Using the notions of weakly unobservable subspace and strongly reachable sub-
space we propose an algorithm to compute the rank-minimizing solutions of the KYP LMI
(1.3) corresponding to a singularly passive SISO system. The theory developed in this chapter
is analogous to the one developed in Chapter 2.

Chapter 6: Passive systems that admit ARE are known to admit extremal storage func-
tions and lossless trajectories. Extremal storage functions are the maximal and minimal solu-
tions of an ARE. On the other hand, lossless trajectories of a passive system are special trajecto-
ries related to the notion of optimal-charging and optimal-discharging of RLC circuits. Both the
notions of extremal storage functions and lossless trajectories are known to be interlinked for
passive systems that admit AREs. Hence, the objective of this chapter is to generalize the no-
tion of extremal storage functions, lossless trajectories and the link between them for singularly
passive SISO systems.

Contribution: We show that the set of solutions of the KYP LMI for singularly passive
systems can be partially ordered with two extremal solutions with one being a maximum and the
other being a minimum. This result is derived from a system-theoretic result that shows that the
confinement of the initial conditions of a singularly passive SISO system over a suitably chosen
set results in smooth lossless trajectories. All these results finally lead to a characterization of
the lossless trajectories of a singularly passive SISO system. Further, we also introduce the
notion of fast lossless trajectories of a singularly passive SISO system in this chapter. The

results in this chapter are analogous to the ones developed in Chapter 3.
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Chapter 7: In Chapter 7 we look into a special and very familiar class of passive systems

called lossless systems. These systems do not satisfy the feed-through regularity condition and
admit the KYP LMI (1.3) with equality. Lossless systems being special passive systems exhibit
certain characteristics that other passive systems do not exhibit. Hence, the objective of this
chapter is to propose methods to compute the storage functions of lossless systems utilizing the
special characteristic properties of lossless systems.
Contribution: In this chapter we propose new results and algorithms to compute the storage
function of a lossless system. The results in this chapter do not share the same theoretical frame-
work as is developed in Chapters 2 - 6. We use five different techniques to compute the storage
function of a lossless system. The first method is based on inversion of a controllability ma-
trix, the second method is LC realization based (Foster, Cauer and their combinations) and the
third is based on the Bezoutian of two polynomials. The notion of controllability/observability
Gramians is used for the fourth, while the last method is based on the algebraic relations be-
tween the states and costates of a lossless system. A comparative study among the five methods
shows that the Bezoutian method is one of the best in computational time and accuracy. Three
different methods to compute the Bezoutian is also reported in the chapter: Euclidean long
division, Pseudo-inverse method and the two dimensional discrete Fourier transform.

Chapter 8: In this chapter we draw parallels between the results in Part-I and Part-II of
the thesis. Finally, irrespective of whether ARE exists or not, we arrive at a generalized theory
applicable to singular LQR problems corresponding to a single-input, singularly passive SISO

systems, and singular case of bounded-real SISO systems, as well.






Part I

Singular LQR problems






Chapter 2

Maximal rank-minimizing solution of an
LQR LMI: single-input case

2.1 Introduction

Singular linear quadratic regulator (LQR) problem is an important problem in optimal con-
trol with a long history [KS72], [Fra79], [HS83], [Sch83], [SS87], [WKS86], [HSWO0O0]. This
problem still continues to be an active area of research [PNMOS], [KBC13], [FN14], [FN16],
[FN18]. In order to motivate the results in this chapter, we first state the infinite-horizon LQR
problem [Kal60].

Problem 2.1. (Infinite-horizon LQR problem) Consider a controllable system ¥ with mini-
mal state-space dynamics %x = Ax + Bu, where A € R**®, B € R*™, Then, for every initial

condition xy € R, find an input u that minimizes the functional

T
“lx S| |x

S
] >0andR > 0.
R

dt, (2.1

where [SQT
A typical example of an infinite-horizon LQR problem is as follows:
Example 2.2. Consider a system with state-space dynamics

X1 =Xx1+x3, Xp=Xx1+Xx3+uU, xX3=x1+x2

For every initial condition x, find an input u that minimizes the functional fowx% dt.

Problem 2.1 with singular R is known in the literature as the singular LOR problem and
with R > 0 it is known as the regular LOR problem. Evidently, Example 2.2 is a singular LQR
problem. The input u that solves the LQR Problem 2.1 is known as the optimal input and the
corresponding states x are known as the optimal state-trajectories of the system. Further, the

11
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minimizers col(x,u) of J(xp,u) in equation (2.1) are also called the optimal trajectories of
the system X. Interestingly, it is known in the literature that the regular LQR problem, under
suitable assumptions, is solvable using a static state-feedback law of the form u(z) = Fx(t),
where F = —R*I(BTKmax + ST) and Kpax 1s the maximal solution of the algebraic Riccati
equation (ARE):

ATK+KA+Q— (KB+S)R'(B"K+S") =0. (2.2)

In other words, for regular LQR problems the state-feedback law u(r) = Fx(t) confines the
set of state-trajectories of the system X to the optimal ones. However, it is known that for the
singular LQR case such a confinement, using the feedback law u(t) = Fx(t), is not possible
[HS83], [WKS86]. For one, a feedback matrix F, as defined above, does not exist because R
is non-invertible for the singular LQR case. Moreover, the ARE itself does not exist either.

However, all LQR problems, irrespective of regular or singular, admit LMIs of the form:

ATK+KA+Q KB+S

> 0. 2.3
BTK+ ST R @3)

We call this the LOR LMI. Notably, it has been established in [Sch83] that for any LQR prob-
lem, the optimal cost is given by xg KnaxXo, where Kpay is the maximal among all the rank-
minimizing solutions of the LQR LMI (2.3). For ease of reference, we call such a solution
the maximal rank-minimizing solution of the LQR LMI. Hence, in order to compute the optimal
cost of an LQR problem, it is imperative that the maximal rank-minimizing solution of the LQR
LMI (2.3) be computed. For a regular LQR problem, the maximal rank-minimizing solution of
the LQR LMI is given by the maximal solution of the corresponding ARE. There are numerous
methods to compute the maximal solution of an ARE. However, these methods cannot be used
to compute the maximal rank-minimizing solution of an LQR LMI for the singular case. In this
chapter, we show that for single-input systems, one of the methods to compute the maximal
rank-minimizing solution of an LQR LMI for the regular case (Proposition 2.19) can be ex-
tended to the singular case. This method, for the regular case, is based on computing a suitable
eigenspace of the corresponding Hamiltonian system [IOW99, Chapter 5]. A direct extension
of this method to the singular case fails, since the dimension of the suitable eigenspace of the
Hamiltonian system in such a case is less than what is required to compute the maximal rank-
minimizing solution of the LQR LMI (see Example 2.20). We show in this chapter that the
Hamiltonian system based method for the regular case can indeed be extended to the singular
case by substituting the role of eigenspace of the Hamiltonian system in the regular case by the
subspaces namely weakly unobservable (slow) and strongly reachable (fast) subspaces of the
Hamiltonian system.

The idea of strongly reachable and weakly unobservable subspaces have been known to
be crucial in singular LQR problem (see [HS83], [WKS86], [HSWO00]). In these works, the
strongly reachable and weakly unobservable subspaces of a system, on which the singular LQR

problem is posed, have been characterized. Recursive algorithms, to compute such subspaces
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for a system, have also been provided in these works. We, however, apply these notions not to
the system itself, but to the corresponding Hamiltonian system that one may obtain directly by
applying Pontryagin’s maximum principle (PMP) to the problem (notwithstanding the fact that
the impulsive nature of the optimal control for singular problems makes application of PMP
inappropriate). The singularity of R (and hence of the LQR problem) manifests itself in causing
the Hamiltonian system to be given by a system of differential algebraic equations (DAEs),
as opposed to a system of differential equations in state-space form for the regular case. The
DAEs of the Hamiltonian system naturally give rise to its weakly unobservable and strongly
reachable subspaces. These subspaces ultimately lead us to a method to construct maximal
rank-minimizing solution of the LQR LMI for a single-input system (Theorem 2.30).

In order to arrive at this method, we first use the recursive algorithms to characterize the
weakly unobservable and strongly reachable subspaces of a single-input single-output (SISO)
system in terms of a suitable matrix pencil known as the Rosenbrock system matrix. These are
the first two main results of this chapter that we develop in Section 2.3 (Theorem 2.24 and The-
orem 2.25). The primary take away from the results in Section 2.3 is the relation between the
relative degree of the transfer function of a system and the dimensions of its weakly unobserv-
able and strongly reachable subspaces. We exploit this relation and the fact that for autonomous
systems the weakly unobservable and strongly reachable subspaces are the direct summands of
the state-space to develop a method to compute the maximal rank-minimizing solution of the
LQR LMI for the singular case. This is the third main result of this chapter (Theorem 2.30),
which we present in Section 2.4. Another result that leads to Theorem 2.30 is the disconju-
gacy property of a certain eigenspace of a suitable matrix pencil called the Hamiltonian matrix
pencil. This is the fourth main result of this chapter (Theorem 2.32) presented in Section 2.4.

2.2 Preliminaries

In this section we review some of the preliminary notions required to develop the results in this

chapter.

2.2.1 Regular and singular matrix pencils

The notion of regular and singular matrix pencils are crucially used throughout the thesis and

these are defined as follows:

Definition 2.3. [Dai89, Definition 1-2.1] A matrix pencil U(s) := sU; — U, € R[s|**™ is said to
be regular if there exist a A € C such that det(AU| — U,) # 0. In other words, U (s) is regular if
det(sU; —U,) # 0. On the other hand, the matrix pencil U(s) is singular if det(sU; — U,) = 0.

For the sake of brevity, we call the matrix pair (U}, U,) regular (singular) if its correspond-

ing matrix pencil (sU; — U,) is regular (singular). Another concept that is used throughout this
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thesis is the notion of eigenvalues and eigenvectors corresponding to a linear matrix pencil. We
define them next.

Definition 2.4. [DualO, Section 3.6] Consider a regular matrix pencil (sU, — U,) with A €
roots (det(sU; —U,)). Then A is called an eigenvalue of (U1,U,) and every nonzero vector
v € ker (AU, —U,) is called an eigenvector of the matrix pair (Uy,U,) corresponding to the
eigenvalue \. Further, every nonzero vector v € ker (AU, — Us)¥, where k € {2,3,...}, is called

a generalized eigenvector of the matrix pair (Uy,U,) corresponding to the eigenvalue A.

The number of times A € C appears as a root of det(sU; — U,) is called the algebraic
multiplicity of the eigenvalue A. We use the symbol 6 (U}, U>) to denote the set of eigenvalues
of (Uy,U,) (with A € o(U;,U,) included in the set as many times as its algebraic multiplicity).

2.2.2 Output-nulling representation and Rosenbrock system matrix

Next we define the notion of Rosenbrock system matrix that has been extensively used in this

thesis.

Definition 2.5. [Ros67] Consider a system with an input-state-output (i/s/o) representation of
the form

d
7 = Ax+Bu, and y = Cx+ Du, where A € R*** B € R¥"™,C € RP*®, and D € RP*P,

I,—A —B
Then, the matrix St D is called the Rosenbrock system matrix and the matrix pair
L O A ) , . .
, is called the corresponding Rosenbrock matrix pair.
0 Opp| |C D

Among the different ways of representing a system, the output-nulling representation of a

system is of importance to us in this thesis and hence, we define this next.

Definition 2.6. [WTO02] A system is said to be in its output-nulling representation if it admits an
i/s/o dynamics of the following form:

d
I = Ax+ Bu, and 0 = Cx+ Du, where A € R** B € R™" C € RP*®, and D € RP*P,

2.2.3 Canonical form of singular descriptor systems

In this thesis, we extensively use one of the canonical forms of a regular matrix pencil (see
[Dai89] for more on different canonical forms). We review the result that leads to such a canon-

ical form next.
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Proposition 2.7. [Dai89, Lemma 1-2.2] A matrix pair (Uy,U,) is regular if and only if there ex-
ist nonsingular matrices Zy and Z, such that Z\U,Z, = diag(ly,,Y) and Z\UyZy = diag(U, Ly,),
where nj +ny =n,U € R**™ and Y € R®*™ js nilpotent'.
U .. . :

, is said to be in a canoni-
Y I,
cal form. Further, note that det(sU; — U,) = k x det(sly, —U), where k € R\ {0}. Hence,
roots (det(sU; —Uz)) = roots (det(sky, —U)). In other words, the eigenvalues of U are the

finite eigenvalues of the matrix pair (Uj,U,). This canonical form of linear matrix pencils is

o : Iy,
A matrix pair (U;,U,) in the form

extensively used in singular descriptor system literature to decompose a singular descriptor sys-
tem into two subsystems, namely the slow and fast subsystems. The next proposition sheds light

into such a decomposition: see [Dai89] for more on such decompositions.

Proposition 2.8. [Dai89, Section 1-4] Consider a singular descriptor system Lsing with a state-
space dynamics U %x = Uyx, where det(sU; —U,) # 0, U,U; € R*™® and U, is singular.

Then, there exists nonsingular matrices Z1,7Z, € R**™ such that

d

EXI =Uxyand Yx) = x» 2.4)
with the coordinate transformation col(xy,x;) = Zz_lx, 2\UZy = diag(ly,,Y), and Z)UxZp =
diag(U, Iy, ), where nj +ny =n and Y is nilpotent with a nilpotency index h.

Further, the unique states of the system due to an initial condition xo are given by the following:

h—1

' Iy 0|73~ [10] >80 0 )z @9
np

i=1

The system [Inl Y] % [g] = [U Inz} [g] is said to be a canonical form of the system
Ysing. From equation (2.5) it is evident that the subspace spanned by the first n; columns
of Z, corresponds to the slow (exponential) states of the system Xgine,. Hence, we call it the
slow subsystem of the system Xging. Further, the subspace spanned by the last ny columns of
Z, corresponds to the fast (impulsive) states of the system Xsing and hence we call it the fast

subsystem of the system Xg;pg.

2.2.4 (A,B)-invariant subspace and controllability subspace

We briefly review the notions of (A, B)-invariant subspace and controllability subspace next (see
[Won85, Chapters 4 and 5] for more on these subspaces).

Definition 2.9. [Won85, Section 4.2] A € R**™ and B € R**™. A subspace . C R" is said to
be (A,B)-invariant if there exists a matrix F € R™® such that (A+BF). C ..

A nilpotent matrix Y is a square matrix such that Y® = 0 for some positive integer h. The smallest positive
integer h for which Y® = 0 is called the nilpotency index of a nilpotent matrix Y.
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Following the notation in [Won85], we use the symbol J(A,B) for the family of (A,B)-
invariant subspaces. The notation F(.¥) is used for the collection of matrices F € R™*™ such
that (A + BF). C .. Such a matrix F is called a friend of .. The next proposition provides
a test for determining whether a given subspace is (A, B)-invariant [Won85, Lemma 4.2]. We

use this test throughout this thesis.

Proposition 2.10. [Won85, Lemma 4.2] A subspace . C R® is (A, B)-invariant if and only if
A C % +ing B.

The notation J(A, B;ker C) denotes the family of (A, B)-invariant subspaces that are con-
tained in ker C, where C € RP*™. Tt is known in the literature that the set J(A, B;ker C) admits
a unique supremal element [Won85, Lemma 4.4]. We use the symbol supJ(A,B;kerC) to
represent the supremal element. This implies that for all . € J(A,B;kerC), we must have
& CsupJ(A,B;ker(C) .

Definition 2.11. [Won85, Section 5.1] Consider A € R**™ and B € R**"™. A subspace % C R"
is a controllability subspace of the pair (A,B) if there exist F € R™™ and G € R™™, such that
Z is the reachable subspace of the pair (A + BF,BG), i.e.

X = ing [BG (A+BF)BG (A+BF)’BG --- (A+BF)*'BG|.

We use the symbol €(A,B) for the family of controllability subspaces of (A,B). The
notation €(A,B;kerC) denotes the family of controllability subspaces that are contained in
kerC. Similar to J(A, B;kerC), the set €(A, B;kerC) also admits a unique supremal element
that we represent by sup €(A, B;ker C) [Won85, Theorem 5.4].

Using the notation (A + BF)| .~ to represent the restriction of (A + BF) to the (A,B) in-
variant subspace ., we define the set

B :={ € J(A,B,kerC)| there exists F € F(.) such that 6 ((A+BF)|») C C_}.

We call any subspace in & a good (A, B)-invariant subspace inside ker C. As shown in [Won85,
Lemma 5.8], the set % admits a supremal element defined as ./ := sup %, i.e., for all elements
S €B,S C .S Hence, 7 is called the largest good (A, B)-invariant subspace inside ker C.
On the other hand, if 6 ((A+ BF)|») € C. in the definition of the set 4, then we call any
subspace in & a bad (A, B)-invariant subspace inside ker C and the corresponding supremal
element the largest bad (A, B)-invariant subspace inside ker C.

Let .* := supJ(A,B;kerC) and #* := sup€(A,B;ker(C). Further, let F € F(.").
Clearly, Z* C .*. Since %" is (A, B)-invariant hence the space .’* can be factored as .7* =
R+ .S*/%*. Let (A+ BF)| o+ denote the map induced by (A + BF)| &~ on the factor space
¥ | . Then, it is known that the set of eigenvalues o <W> remains invariant for

all F € F(.*). For a system with an i/s/o representation %x = Ax+ Bu and y = Cx, the complex

numbers ¢ <(A +BF))|. 5//*) are known as the transmission zeros of the system. Note importantly

that, for a single-input controllable system, we have %* = {0}. Consequently, ./”* /%* = ./*,



2.2 Preliminaries 17

and (A + BF)| - = (A4 BF)| »+. This means that for single-input systems, &((A 4+ BF)| o) is
the set of the transmission zeros. In other words, the set 6 ((A + BF )| »+) remains invariant for
all F € F(.*). Further, it can also be shown that for a controllable and observable SISO system,
the set 6((A + BF)| »+) is equal to the set of the roots of the numerator of G(s) (elements
included in the set with multiplicity), where G(s) = C(sI, —A)~'B € R(s) ([Won85, Section
5.5]). Using the symbol rootnum(p(s)) to denote the roots of the numerator of a rational
function p(s) € R(s), we can therefore infer that 6((A + BF)| »+) = rootnum(G(s)). This
property of single-input systems is essential for the development of the theory in Section 2.3
and Section 2.4.

2.2.5 Weakly unobservable and strongly reachable subspaces

Consider the system X with an i/s/o representation %x = Ax+ Bu and 0 = Cx, where A €
R*>™ B € R™*™ and C € RP*™. Associated with such a system are two important subspaces
called the weakly unobservable subspace and the strongly reachable subspace. We briefly re-
view the properties of these subspaces next (see [HS83] for more on these spaces). Before we
delve into the definitions of these subspaces, we need to define the space of impulsive-smooth
distributions C‘;’mp (see [HS83], [WKS86]). In the sequel, we use the symbol 6 and o @) to de-
note Dirac delta impulse function supported at zero and the i-th distributional derivative of &
with respect to ¢, respectively. We also use the symbol €*(R,R")|r, to denote the space of all

functions from R to R that are restrictions of € (R, R™) functions to R .

Definition 2.12. [HS83, Definition 3.1] The set of impulsive-smooth distributions €3y, is de-
fined as:

k
Y = {f = frog + finp| freg € € (R,R")|r, and finp =Y a;8"), with a; € R¥ k € N} .
i=0
In what follows, we denote the state-trajectory x(z) and output-trajectory y(¢) of the system
¥ corresponding to initial condition xp and input u(z) using the symbols x(¢;xo, u) and y(¢;xo, u),
respectively. The symbol x(04;xp,u) denotes the state-trajectory that can be reached from xg

instantaneously on application of the input u(t) at t = 0.

Definition 2.13. [HS83, Definition 3.8] A state xy € R® is called weakly unobservable if there
exists a regular input u(t) € € (R,R")|r, such that y(t;x0,u) =0 for allt > 0. The collection of
all such weakly unobservable states is called a weakly unobservable subspace of the state-space
and is denoted by O,

Next we review one of the properties of weakly unobservable subspace that is crucially

used in this thesis.

Proposition 2.14. [HS83, Theorem 3.10] The weakly unobservable subspace O, is the largest
(A, B)-invariant subspace inside the kernel of C, i.e., O,, = supJ(A,B;kerC).
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The other space that we are interested in, is the space of strongly reachable states.

Definition 2.15. [HS83, Definition 3.13] A state x; € R" is called strongly reachable (from the
such that x(04;0,u) =x; and y(t;0,u) € € (R, RP)|g, .
The collection of all such strongly reachable states is called the strongly reachable subspace of

origin) if there exists an input u(t) € €3,

the state-space and is denoted by Xs.

A method to compute the space Z is given by the following recursion (see [HS83] for
more on the algorithm)

Zo = {0} CR®, and Byt = [A B] {(%@ P)Nker [C opvm}} C %, (2.6

where #; := {[({] e R*™|w € #;} and 2 := {[}] € R*™|a € R"}. In Section 2.3.1 we use
this recursive algorithm to characterize the strongly reachable subspace of a single-input system
in terms of the Rosenbrock system matrix.

Since the space 0, deals with infinitely differentiable inputs, we call &), the slow subspace
of a system. Further, note that since ), is the largest (A, B)-invariant subspace inside the kernel
of C, such a subspace also admits largest good and largest bad (A, B)-invariant subspace inside
the kernel of C. We call such a space the good slow subspace and the bad slow subspace of the
system, respectively and denote them with the symbols &, and 0, respectively. On the other
hand, since the space %, admits impulsive inputs, we call Z the fast subspace of the system.

In the sequel, we use the notion of autonomy of a system and its relation with the spaces
O\, and Z;. Hence, we define autonomy of a system first and then review the result [HSWO0O,
Lemma 3.3] that establishes a noteworthy property of &), and % for autonomous systems.

Definition 2.16. [HSWO00] A system with an output-nulling representation %x = Ax+ Bu and
0 = Cx, where A € R*®, B € R™™®, and C € RP*?, is called autonomous if for every initial

condition xo € O,, the system has a unique solution col(x,u).

Proposition 2.17. [HSWO00, Lemma 3.3] Consider the system %x = Ax+ Bu and 0 = Cx, where
A e R*¥® B e R™™ and C € RP*®, Then the following are equivalent:

(1) The system is autonomous.
(2) G(s) :=C(sly —A)~'B is invertible as a rational matrix.
(3) O ® %; = R and ker [O’;m] — (0.
Since we are deal with single-input systems in this thesis, we consider the matrix B to be of

full column-rank without loss of generality. Hence, the second part of Statement (3) in the

proposition is always true.
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2.2.6 ARE and Hamiltonian systems

One of the widely used methods to compute the maximal solution of the ARE (2.2) is to use the

basis of a suitable eigenspace of the matrix pair (E,H ), where

L 0 0 A 0 B
E=|0 I O0]|,andH:=|—-0 -AT —5|. (2.7)
0 0 Opp st BT R

We call the matrix pair (E,H) the Hamiltonian matrix pair and the matrix pencil (sE — H) the
Hamiltonian pencil. The suitable eigenspace used to compute the maximal rank-minimizing
solution of the ARE (2.2) correspond to a certain choice of eigenvalues of (E,H). In order
to understand this choice of eigenvalues the notion of Lambda-sets is essential and hence we

define Lambda-sets next.

Definition 2.18. [Kuc91, PBO8] Let p(s) be an even-degree polynomial with roots (p(s)) N
JR = 0. A set of complex numbers A C roots (p(s)) is called a Lambda-set of p(s) if it satisfies
the following properties:

(1) A=A, ie., if A € Athen, A € A. (complex conjugacy)
(2) AN(—=A) =0, ie, if A € Athen, —A ¢ A. (unmixing)
(3) AU(—A) =roots(p(s)) (counted with multiplicity).

Now that we have the definition for Lambda-sets, we review the method to compute the maximal
solution of the ARE (2.2) (see [IOW99] for more). Recall that the maximal solution of an ARE
is the maximal rank-minimizing solution of the corresponding LMI (2.3).

Proposition 2.19. Consider the LOR Problem 2.1 with R > 0. Let the corresponding Hamil-
tonian matrix pair (E,H) be as defined in equation (2.7). Assume c¢(E,H)N jR = 0. Let
A be a Lambda-set of det(sE — H) with cardinality n and A C C_. Let Vip,Vop € R**®
and V35 € R™™ be such that the columns of Vepn = col(Via,Vaa,Vsa) form a basis of the n-
dimensional eigenspace of (E,H) corresponding to the eigenvalues of (E,H) in A. Then, the

following statements hold.
(1) Via is invertible.
(2) Kpax := Vz,\Vlj\l is symmetric.
(3) Knax is the maximal solution of the ARE (2.2).
(4) Kuax is the maximal rank-minimizing solution of the corresponding LOR LMI (2.3).

(5) Knax = 0.
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Although Proposition 2.19 does not explicitly use invertibility of R while finding the maximal
rank-minimizing solution of the LQR LMI, yet the proposition cannot be used to compute such
a solution for the singular LQR LMI. We motivate the reason for this using Example 2.2 stated
at the beginning of this chapter.

Example 2.20. From Example 2.2, we know that the state-space dynamics is:

J X1 1 0 1| |x 0
I x| =11 0 1| |x|+|1]|u
X3 1 1 0f |x3 0

Further, the functional to be minimized can be rewritten as

and x 1= col(x,x2,X3).

/°° (xTQx) dt, where Q :=
0

S O O
S O O
- O O

On construction of the Hamiltonian pencil pair (E,H) using A, B, Q in Example 2.20, it can be
verified that det(sE — H) = 1 —s?. Hence, A = {—1}. The eigenvector of (E,H) corresponding
to —1, is [1 1 =22 000 T. Therefore, ViAo = [1 1 —2} ! and Vo) = [2 0 0] T.
But Vi is not a square matrix. Thus, Proposition 2.19 cannot be used to solve singular LOR

problems.

From Example 2.2, it is clear that Proposition 2.19 fails in case of singular LQR problems
because the degree of det(sE — H) is strictly less than 2n. This fall in the degree causes a
deficit in the cardinality of possible Lambda-sets of det(sE — H). Indeed, a Lambda set of
det(sE — H) can now have cardinality strictly less than n; we define it as ng < n. Consequently,
the eigenspace of (E,H) corresponding to such a Lambda-set would also show a deficit in
its dimension from being n. This deficit in the dimension of the eigenspace is required to be
compensated by (n —ng) suitable vectors. These suitable vectors must be the basis of a space
complementary to the eigenspace that supplies the ng vectors. Of course, this compensation
cannot cannot be done by the basis vectors of any arbitrary complementary space, since we
would not get a solution of the LQR LMI then. Our main result, Theorem 2.30, shows exactly
what this complementary space needs to be for getting the maximal rank-minimizing solution
of the LQR LMI.

Since we deal with the singular LQR problem for single-input systems, we rewrite the

LQR Problem 2.1 for the single-input case as follows:

Problem 2.21. (Single-input singular LQR problem) Consider a controllable system ¥ with
state-space dynamics %x = Ax+ bu, where A € R**® and b € R". Then, for every initial con-

dition xo € R, find an admissible input u that minimizes the functional

J(xo,u) := /O ) (x"Qx) dt, where Q > 0. (2.8)
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In the formulation of the singular LQR problem above, we have not explicitly defined
the space from which the inputs u# need to be chosen. Since in this chapter we are primarily
concerned with the maximal rank-minimizing solution of an LQR LMI and do not deal with
the trajectory level interpretations of the LQR problem, we delay the definition of admissible
inputs to Chapter 3 (see Definition 3.4).

Note that the LQR LMI (2.3) with respect to Problem 2.21 takes the following form:

ATK+KA+Q>0,
>0 & 0 (2.9)
Kb =0.

ATK+KA+Q Kb
b'K

Further, for single-input singular LQR problems as defined in LQR Problem 2.21, the Hamilto-
nian matrix pair in equation (2.7) takes the following form:

L 00 A 0 b
E:=|0 I, 0|,andH:=|—-Q —-AT 0]. (2.10)
0 00 0 b 0

Interestingly, the Hamiltonian matrix pencil (E,H) in equation (2.10) can be associated with a

differential algebraic system as given below:

InOde A 0 bf [x

0 I 0| |z| =|-Q —AT of |z]|. (2.11)
0 00 u 0 b 0| |u

¥ D

The system represented by this first order representation (2.11) is called the Hamiltonian system;
we use Yyam to denote this system (see [[OW99] for more on Hamiltonian systems). Further,

the Hamiltonian system in equation (2.11) can be written in an output-nulling representation as

d —~
dt |z

~ b
, b= [0] and ¢ := [O bT]. Note that the Hamiltonian matrix pair

given below:

X

Z

+bu, 0:8H, 2.12)
Z

A 0
-0 AT
(E,H) in equation (2.11) is indeed the Rosenbrock matrix pair for the Hamiltonian system Xy

where A =

in equation (2.12).
In what follows, we shall need the notion of disconjugacy of an eigenspace of the Hamil-

tonian matrix pair. We review this next.

Definition 2.22. [IOW99, Definition 6.1.5] Let & be an eigenspace of (E,H ), where (E,H) is as
defined in equation (2.7). Assume the columns of a matrix V, to be the basis of &. Conforming
to the partition of H, let V, := col(V|,V5,V3). Then, & is called disconjugate if Vi is full

column-rank.
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2.3 Characterization of slow and fast subspaces in terms of

Rosenbrock system matrix
Consider X, to be a system with an output-nulling representation of the form:

d
X =Px+Lu, and 0 = Mx, where P € RVN . MT ¢ R\ {0}. (2.13)

Define the matrix pair

Iy O
0 0

P L

Up = € ROHDXMHD) and U, =

Note that (sU; — U>) is the Rosenbrock system matrix for the system X in equation (2.13) and
(U1,U,) is the corresponding Rosenbrock matrix pair. In this section we characterize the slow
subspace 0,, (weakly unobservable) and fast subspace #; (strongly reachable) of the system
Y, in terms of the matrix pencil (U;,U,). Further, we also characterize the good slow subspace
of ¥ in terms of the eigenspace of (U;,U>). Hence, we have divided this section into three
subsections; the first being characterization of the fast subspace of X;,. In the second and third
subsection we characterize the slow and good slow subspaces of Xy, respectively in terms of the

eigenspace of the Rosenbrock matrix pair (U, U,).

2.3.1 Characterization of the fast subspace

In order to characterize the fast subspace, we need certain identities related to the Markov
parameters of the system X,. We present this in the next lemma and follow it up with a result
that characterizes the fast subspace of the system X in terms of the matrix pair (U;,U). In the
sequel, we use the symbol degdet(p(s)) to denote the degree of a polynomial p(s) € R]s].

Properties of the Markov parameters of a SISO system

Lemma 2.23. Consider the system Xy as defined in equation (2.13). Let the corre-
sponding Rosenbrock matrix pair (Uy,U,) be as defined in equation (2.14). Assume
det(sU; — U,) # 0. Define degdet(sU; — U,) =: Ng and N¢ := N — Ng. Then,

MP*L =0, fork € {0,1,... Nt —2} and MP*s~'L 0. (2.15)

Proof: Define G(s) := M(sly — P) 'L € R(s). Using the notion of Schur complement, we have

det(sU; —U>)

det(sU; —U,) =det -
ot(sUi —Uz) = de det(sly — P)

= —M(sly— P)"'L x det(sly — P) = G(s) =

sly—P —L
-M 0

Since degdet(sU; — U,) =: Ng and degdet(sly — P) = N, the relative degree of G(s) must be
N — Ng = N¢. Now on expanding (sky — P) ! in a Taylor series about s = oo, we have

G(s)=M(sly—P) " 'L=

1 P P? ML MPL MPL
M h+—+—=5+ | L=—+—F+—3
S S S ) ) R)
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Since the relative degree of the rational polynomial G(s) is Nr. Hence, we can infer from the
Taylor expansion of G(s) that

lim s*"1G(s) = 0= MP*L for k € {0,1,...,N; —2}.

s—300

Further, since relative degree of G(s) is Ng, lim; . "2 G(s) # 0. Hence, MPY:~1L £ 0. |

Now using Lemma 2.23 we characterize the fast subspace of a SISO system.

Characterization of the fast subspace of a SISO system

Theorem 2.24. Consider the system Xy, as defined in equation (2.13). Let the correspond-
ing matrix pencil pair (Uy,U,) be as defined in equation (2.14). Assume det(sU, —U,) #
0. Define degdet(sU; — Us) =: Ng and N¢ := N —Ng. Let %y be the fast subspace of Xp.

Then, the following statements are true:
(1) % =ing|L PL --- PNf*lL].

(2) dim(Z%y) = V.

Proof: (1): From equation (2.6) in Section 2.2.5, the recursive algorithm to compute the fast
subspace of X is given by:
Ry =1{0} CRY and %, := [P L} {(7/,69 P)Nker [M 0] } C Xy,

:[P L}{(%mker[M 0])@<9f’mker[M 0]>}gfsl.6)

where #; .= {[({] e RV |we %} and 2 := {[)] e R"!|a € R}. Note that since &N

ker (M 0| = &, the recursion in equation (2.16) can be rewritten as

%o ={0} SR and #;11 = |P L] {(#inker M o])o 2} c, 2.17)

Now, we claim that %, = img L + img (PL) 4 --- + img (P*~'L) for k € {1,2,3,...,N¢}. To
prove this we use mathematical induction along with Lemma 2.23.

Base case: (k= 1) Since %y = {0}, we have #( = {0}. Therefore, we have (7/0 Nker [M O} ) =
{0} € R¥*!. Then, using equation (2.17), we have

%lz[P L]{(%ﬂker[M 0])@32}:[P L} ({0} 2} = ing L.

Induction step: Assume %y = img L+ img (PL) +---+ img (P~'L) for k < N¢. We prove that
PRyy1 = img L+ img (PL) +--- + img (PL).
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From equation (2.17), we have

Frr = |P L:{(V/kﬂker[M 0])@9}

[ {((Soms ] ) o ]}

— :P L: {§ (img [PSL] Nker [M 0]) @9’}. (2.18)

i=0

Since [M 0] [P(i)L} = MP'L =0 fori < Ng — 1 (from Lemma 2.23), we must have

S et o) -£([2)

i= i

=

Il
o

Thus, from equation (2.18) we have

= [p 1] {3 (sms 7y

i=0

) @9} = img L+ img(PL) +---+ img (P*L).

By the principle of mathematical induction, we conclude that
Ry = img L+ img (PL) +---+img (P*"!L) fork € {1,2,3,...,N¢ }. (2.19)

This proves our claim.

Next we claim that %y, 1| = Zy,. From equation (2.17) and equation (2.19), we have

Pt = :P L:{(V/Nfﬂker [M OD@@}

_ :p L: {Nfz_l (img -P;L- Nker [M 0})@@}

i=0 L J
_ o (Ne—2 [ piy] Ne—1
= _P L_ {lz_; (img _POL_ Nker [M O}) + (img [P 0 L] Nker [M 0]) @9}.
(2.20)

From Lemma 2.23, we know that MP":~!L £ 0. Hence, img [PNfoflL] Nker[M 0]=0. Hence,
from equation (2.19) and equation (2.20) we have Zy,+1 = %x,. Thus, from [HS83] (see
discussion after equation 3.22), we infer that %y, characterized in equation (2.19) is the fast
subspace Z; of Xy, i.e., Zx; = Hs. From equation (2.19), Statement (/) of the lemma directly
follows.

(2): Define W := [L PL ---P%~1L|. To the contrary, let us assume that there exists
a nontrivial vector w € Rt such that Ww = 0. Conforming to the partition of W let w :=

col(wo,Wi,...,Wy,—1)-
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Now, we pre-multiply W with M in the equation Ww = 0 and use the fact that MP*L =0
fork € {0,1,...,N¢ —2} from Lemma 2.23:

wo

w1
ML MPL --- MP%“ L | =0=>MPY Lwy, 1 =0

WNs—1

= wy,_1 = 0(since MPY 1L #0).

Next, we pre-multiply W with MP in the equation Ww = 0 and use Lemma 2.23 with the
fact that wy, 1 = 0:

_ v -
wi
MPL MP?*L ---MP 1L MPNfL] : = 0= MP" 'Lwy, =0=wy, »=0.
Wie—2
0
Continuing in the same manner, it is evident that w; = 0 for i € {0,1,...,N; — 1}. However,

this is a contradiction since we assume w to be nonzero. Therefore, there exists no nontrivial
vector in the kernel of W, i.e., W is full column-rank. Hence, from Statement (/) of the lemma,
it directly follows that dim(Z%;) = Ns. |

Thus, from Theorem 2.24 we establish that for a SISO system the fast subspace is the space
spanned by the columns of a truncated controllability matrix. This is expected because it is
known in the literature that for a SISO system the strongly reachable subspace is spanned by
a truncated controllability matrix [Wil81]. However, the main contribution of Theorem 2.24
is Statement (2) which shows that the dimension of the fast subspace depends on the relative
degree of the transfer function of the system. An important point to note here is that the relative
degree of a system remains invariant irrespective of the i/s/o representation of the system being
minimal or non-minimal. Hence, the dimension of the fast subspace is a system property.
Another salient feature of the fast subspace of X, is that it is a Ng-dimensional subspace inside
the controllable subspace of the system Xp.

2.3.2 Characterization of the slow subspace

As motivated in Section 2.2.5, let 0, be the slow subspace of the system X, defined in equation
(2.13). In the next lemma we establish that &), can be characterized by the eigenvectors of the

Rosenbrock system matrix (Uy,U>).
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Characterization of the slow subspace of a SISO system

Theorem 2.25. Consider the system X, as defined in equation (2.13) and the cor-
responding Rosenbrock matrix pair (Uy,U,) as defined in equation (2.14). Assume
det(sU; — U,) # 0 and degdet(sU; — U,) =: Ng. Consider O, to be the slow subspace
of Xp. Let Vi € RV gnd Vs € RUYs pe such that

P L||V L of [V
N "' 7, where J € R gnd 6(J) = roots (det(sU; — Us)). (2.21)
M 0] |V, 0 0] |\
—_—— —_——
U, U

Then, the following statements are true:
(1) Oy, = ing V. (2) dim(0),,) = Ns. (3) Vi is full column-rank.

Proof: (1): From equation (2.21), it is clear that P\71 +L‘72 = \71J . Hence, by Proposition
2.10, img \71 is a (P,L)-invariant subspace. Further, from equation (2.21), M\71 = 0. Therefore,
img V) € J(P,L;kerM). We claim that img V| = supJ (P,L;ker M), i.e, imgV, = O, (by
Proposition 2.14).

Let us assume to the contrary that img V) is not the largest (P,L)-invariant subspace inside
ker M. Then, there exists a nontrivial subspace ¥, such that the space img ‘71 oY, =0,,
where dim(7,) =: £. Let ¥, = img \73, where ‘A/e e R¥*! is a full column-rank matrix. Since

img \71 @Y, = 0, and 0, is (P,L)-invariant inside ker M, we must have by Proposition 2.10
PO, C O, +ing L= P(img Vi@ ¥,) C O\, +img L= P¥, C O\, + img Land MY, = {0}.
Therefore, there exist 7} € R, T, € R¥*! and T; € R*¢ such that

~ [
PV, =LT, + [vl Ve}

] and MV, = 0. (2.22)
I3

Therefore, writing equation (2.21) and equation (2.22) together we have

P LIV, V L ol|vi V.||l T
Al e | _ N A] e 2 . (223)
M 0| |V, -1 0 ol |V, —1y| |0 T3
—— ——
Uy U,

Since (sU; — U,) is a regular matrix pencil, we can rewrite (U;,U,) in the canonical form as de-
scribed in Section 2.2.3. Therefore, there exist nonsingular matrices Z;, Z, € RA+Dx®+1) gych

1
that Uy = 73
0

OZandU—ZJ
Yz 2—10

0
I] Z», where Y € RVH1-Ne)x(W+1-Ne) j¢ 3 pilpotent

~ I 0 N J 0
matrix. Define U, := 0y and U, .= o 1l Using this in equation (2.23), we have
Jo|l_[w W 1ol (v v.l[i T
Z | | =z Z | 2. (2.24)
0 I Vo =T 0Y Vo, —=T1| |0 T
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V Ty ~
Let Z, ‘71 = [;S , where Ty, € R¥s>Ns and 7 e RO+HI-Ns)xNs  From equation (2.24) we
2
have
J 0 V I 0 % J 0|7 I 0| %
Z || = Z | = N | = N1y (2.25)
0 I Vs 0Y 1 o I|l|T 0o Y||T

Therefore, from equation (2.25) we have T =YTJ. Pre- and post-multiplying this equation
by Y and J, respectively we have YTJ = Y2TJ? = T = Y2TJ?. Continuing pre- and post-
multiplication with Y and J, it is clear that T = YKTJ* for all k € N, However, since Y is

nilpotent matrix, it admits a nilpotency index say h. Thus, we have T = YT J* = 0. Therefore,

% T v, Y
wehave Zy |~ | = | ™™ |. DefineZ, | ¢ | =: | '], Y] € R¥*! and Y, € RO+I-Ne)x{ Thys,
Vs 0 =T 1>

from equation (2.24) we have

JO| |, Y| |1 0
0 7ll0 Y| |0V

Thus, we have Y =YY T3 = YY), Tz = YZY'2T32 = Y,. Using this line of reasoning, it is evident

. (2.26)

Iy, 1| |J T
0 Y| |0 T

that Y kYszk =1, for all kK € N. Since Y is a nilpotent matrix, it admits a nilpotency index
h € N and therefore, Y® = 0. Thus, we must have Y, = 0. Since Ty, is a nonsingular matrix,
img Yy C Ty,. Thus, we have

. Yl . Yl . TNS . -1 Y1 . -1 TNS
img T, = img 0 C img 0 = img | Z, 0 C img | Z, 0

V. V - -
=img| ° | Cimg [‘71] = imgV, C img V.
— 11 2

Therefore, there does not exist any nontrivial subspace 7, such that img \71 @Y, = 0,,. This is
a contradiction to the assumption that img V; # supJ (P,L;ker M). Hence, img V, = O,
(2): Define G(s) := M(sly — P)~'L. Now computing det(sU; — U) using the notion of

Schur complement with respect to (sly — P), we have

S]N—P —

det(sU; —U;) = det
(U1~ 0h) [—M 0

] = (=M (sly — P)"'L) x det(sly — P). (2.27)
Since det(sU; — Up) # 0, we must have M (sky — P)~'L = G(s) # 0. Hence, G(s) is nonzero
rational polynomial. Therefore, from Proposition 2.17 we have 0,, & %; = RY. From Statement
(2) of Lemma 2.24, we know that dim(Zs) = N — Ng. Therefore, dim(&),) = Ns.

(3): From Statements (/) and (2) of this theorem, it follows that dim(&),) = dim <img \71) = Ng.
Therefore, \71 is full column-rank. [ |
Thus, the dimension of the slow subspace of a SISO system is equal to N —N¢. For a SISO
system that is both controllable and observable, the dimension of the slow subspace is equal
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to the degree of the numerator of the system’s transfer function. On the other hand, for a non-
minimal system the dimension of the slow subspace = degree of numerator of the system’s
transfer function (after pole-zero cancellation) + number of uncontrollable/unobservable (or
both) eigenvalues of the system.

Next we characterize the good slow subspace of the system X, in terms of the eigenspace
of the Rosenbrock matrix pair (U;,U,). From Theorem 2.25 it is clear that the columns of ‘71 18
the basis of &,,. Further, from equation (2.21) we know that

I 0| |V,
= | . (2.28)
0 0] |V2
Assuming that o(J) N jR = 0, it is clear that 6(J) can be partitioned as 6(J) = 0x(J) U op(J),
where 04(J) C C_, ou(J) C C*. Therefore, there exists a nonsingular matrix 7 such that

Vi

~

1%}

P L
M 0

Jg 0O V Vig V
T-UT = |"8 |, where 6(Jg) = 04(J) and 6(Jy) = Gu(J). Define |~ |T = |8 I®
0 Jh V2 Vag Vo
where the partitioning is done conforming to the partition in 7~'JT. Then, equation (2.28)
takes the following form:
P L[V n ol[vil..
~|T= ~ | TTJT
M 0|V, 0 0|V
P L|[V, V I 0][Vig Vi|[Jg O
N Alg Alb _ N Alg ,\lb g ' (229)
M Of|Vag Vap 0 Of|Vg Vau||O0 W

We claim in the next lemma that the good slow subspace of the system X, is given by img ﬁlg.

A basis for the good slow subspace of a SISO system

Lemma 2.26. Consider the system X, as defined in equation (2.13) and the cor-
responding Rosenbrock matrix pair (Uy,U,) as defined in equation (2.14). Assume
det(sU; — U,) # 0 and o(Uy,U,) N jR = 0. Define the family of subspaces:

B :={ €I (P,Lker M)| there exists F € F(.%) such that 6 (P+LF)|») CC_}.
Let 0\, := sup%. Consider Vlg to be as defined in equation (2.29). Then,

img Vlg = Oy,

Proof: Since \71 is full column-rank (by Theorem 2.25), \71 g 18 full column-rank, as well. Let us
assume to the contrary that img ‘71g C O)g. Then there exists a nontrivial subspace ¥ such that
img Vlg oY = O\ Define dim(img Vlg) =: Ng and dim(¥) =: N;. Let ¥ =: img V, where
V e RYY is full column-rank. Following the same line of argument as in the proof of Statement
(1) of Theorem 2.25, there exist 7 € RPN T € R¥*Ne and T3 € RY*N guch that

1

PV =171+ [V V| |Z| .MV =0ando(fy) CC-. (2.30)
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Therefore, from equation (2.29) and equation (2.30) we have

P LV, V L Ol |Vi., V ||J T .
e U= Y e T 118 2l ando(T)Uo(Jy) SC_. (231)
M 0| |V T 0 0| [V —T1||0 T
—— ——
U, U

I 0
Now there exist nonsingular matrices Z;,Z, € RW+D>XM+1) gych that U; = Z; [O Y] Z, and

J 0
U, =274 [O I] Z3. Therefore, equation (2.31) takes the following form:

J 0 Vie V 10 Vie V||V T

Z z|te T =z z | e T |%e 22|, (2.32)
0 1 Vg —Th 0Y Ve —Ti| |0 T3
02 ﬁl

Vig
2g
matrix pair (U;,U). Note that any eigenvector (or generalized eigenvector) of the matrix

From equation (2.32) it is clear that img (Zz

]) is a subspace of the eigenspace of the

pair (U;,U,) will be of the form col(w,0) € R¥*1, where w € R¥ is an eigenvector (or

generalized eigenvector) of J;. Thus, there exists a full column-rank matrix Ty, € RNs xNg

% T; % Y
such that Z, el | e e RO+DxNg  Define L ~ | = Al
Vzg 0 -Ti Yz

Y, € ROF1-N:)xNg Thyg, from equation (2.32) we have
o] [m, Yi| |1 o] [m, Y
0 7I/{0 Yo |0 Y|[|O T

From equation (2.33), we have Y’z = YY'27A"3. Since Y is nilpotent, similar to the proof of State-

. where Y| € R%*¥ and

0 T

T TZ] . (2.33)

ment (/) of Theorem 2.25, we must have Y‘z = 0. Hence, equation (2.33) becomes

[, <[, [E

- 2.34
0 7 (2.34)

Since 6(Jg) UG (T3) € 6(J), 6(J)NC_ = 6(Jg), and 6(J) N jR = 0, we must have 6(73) C C*.
However this is a contradiction to the fact that & (7A”3) C C_ (see equation (2.30)). Therefore,
there exists no nontrivial subspace ¥ such that img \71g &> Y = 0\,¢. Hence, \71g = Oyg. [ |

From Lemma 2.26 it is evident that for a controllable and observable SISO system, the dimen-
sion of the good slow subspace is equal to number of zeros of the system that have negative real
parts. On the other hand, for a non-minimal SISO case (uncontrollable/unobservable or both),
the dimension of the good slow subspace = number of zeros of the system that have negative
real parts + number of uncontrollable/unobservable (or both) eigenvalues of the system with

negative real part. Since we are dealing with SISO systems, in terms of transmission zeros, the
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dimension of the good slow subspace of the system is equal to the transmission zeros of the
system with negative real parts.

For a SISO system X, with det(sU; — U,) # 0 and 6(U;,Uz) N jR = 0, the state-space
admits a direct-sum decomposition of the following form.

RY: State-space of a system
Slow subspace of dimension Ng EB Fast subspace of dimension N¢

Good slow subspace @ Bad slow subspace
Dimension: Ng Dimension: Ny

Figure 2.1: A direct-sum decomposition of the state-space RY

In the next section we illustrate the results of this section with examples.

Illustrative examples

The first example we consider is that of a controllable and observable system.

Example 2.27. Consider a system X, with the following i/s/o representation.:

0O 1 0 0 0
d 0 0 1 0 0
d—xz X+ u, O:[l 1 1 O}x (2.35)
‘ 0o 0 0 1 0 ,
1 -2 -3 -4 1 M
. ~ .~
P L
The transfer function for this system is: G(s) st1 Here N = 4 and th
e transjer function jor 1S system 1s. S) = . ere = an e
Y st +4s3 4352425+ 1

relative degree is Ny = 3. Hence, Ng = N —N¢ = 1. The Rosenbrock matrix pair corresponding
to this system is:

[0 1 0 0 0 (1 0 0 0 O]
0 0 1 00 01000
Ub=| 0 0 0 1 0|,andUy=10 010 0
1 -2 -3 —4 1 000T10
1 1 1 0 0] 0000 0]

By simple multiplication it can be verified that det(sU, —U,) = —(s+ 1). Hence 6(Uy,U,) =
—1. The eigenvector of (Uy,U,) corresponding to —1 eigenvalue is |1 —1 1 —1 —1]|.

~ T ~
Therefore, we have Vi = |1 —1 1 —1| and img V) is the slow subspace of the system.
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On the other hand, by Lemma 2.24, the fast subspace of the system is given by

0 0 0
0 0 1
R, = i [L PL PZL}:'
= img mg |,
1 —4 13
It is evident that
1 0 0 0
1 0 0 1
R* — @i
EL Y0 1 4
1 1 -4 13

Further, note that since 6(Uy,U,) C C_, therefore img V) is indeed the only good slow subspace
of the system.

Note that in Example 2.27 the system is in a minimal i/s/o representation. Hence, the
dimension of the slow subspace is equal to the degree of the numerator of G(s). However, as
explained above this is not the case for non-minimal state-space representations. We illustrate
this with the help of another example where the i/s/o representation is not minimal.

Example 2.28. Consider a system X, with the following i/s/o representation.:

0 1 0 0 0
d 0 0 1 0 0
= x| fw 0=|1 1 0 ox (2.36)
t 0 0 0 1 0 , ,
—24 —-50 -35 -10 1 M
~ s —~—
P L
The transfer function for this system is:
G(s) = :
VTS + 952 +265+24"

Here N = 4 and the relative degree Ny = 3. Therefore Ny = 1. The Rosenbrock matrix pair

corresponding to this system is:

[0 1 0 0 O] (1 00 0 O]

o 0 1 0 0 01000

Ub,b=| 0 0 0 1 0|l,andUi=[0 01 0 0
—24 —50 —35 —10 1 000710

1 1 0 0 0 00 00 0]

By simple multiplication it can be verified that det(sU; —U,) = —(s+ 1). Hence o(U;,U;) =

—1. The eigenvector of (Uy,U,) corresponding to —1 eigenvalue is [1 -1 1 -1 -1].

Therefore, we have Vi=|[1 =1 1 —1| and img V) is the slow subspace of the system.
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On the other hand, by Lemma 2.24, the fast subspace of the system is given by

0 0 0
0 0 1
Ry = i [L PL PZL]:‘
s 1mg 1mg O 1 _10
1 —10 65
It is evident that
1 0 0 0
-1 0 1
R* =4 D
WEL Ty 1 10
—1 1 —10 65

Further, note that since 6 (Uy,U,) C C_, therefore img \71 is indeed the only good slow subspace
of the system.

Note that in Example 2.28 the degree of the numerator of G(s) is zero. However, we have
Ng = 1. This is because the system in the example is unobservable with —1 as the unobservable
eigenvalue. Hence, the dimension of the slow subspace = degree of the numerator of G(s) +
number of uncontrollable/unobservable (or both) of the system =0-+1 = 1.

Now that we have characterized the slow and fast subspaces of a system in terms of Rosen-
brock system matrix, we use these subspaces to present a method to compute the maximal

rank-minimizing solution of an LQR LMI for single-input systems.

2.4 Maximal rank-minimizing solution of LQR LMI: single-

input case

Before we present the first main result of this section, we show the determinant of the Hamil-
tonian pencil admits a Lambda-set. Note that this result is known in the literature, however we

reproduce it next as a lemma for the sake of completeness.

A Hamiltonian matrix pair admits Lambda-sets

Lemma 2.29. Consider the singular LOR Problem 2.21 with a Hamiltonian matrix pair
(E,H) as defined in equation (2.10) and 6(E,H) N jR = 0. Let C € R**™ be a full row-
rank matrix such that Q =: CT C. Define G(s) =: C(sl, —A)~'b. Assume let G(s) =: %,
where N(s) € R[s]* and d(s) = det(sl, —A). Then, the following statements are true:

(1) det(sE —H) = N(—s)TN(s).

(2) If det(sE —H) ¢ R, then det(sE — H) admits a Lambda-set.

-~

Proof: (1): On computing det(sE — H) using Schur-complement with respect to (sl —A),
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we have

shn ~A -b

det(sE — H) = det = —(shy —A)"'b x det (shy —A) (2.37)

~

—C

Now using the fact that Q = C T'C, we have

- —1
csha—A) h=o pr] oA 0 H
i ] 0 shy+A 0
7o &1 (sh—A) ! 0 ] [b'
i I (sl +AT)1Q(sk, — A) ™! (sl +AT)71| |0
Ty o] [ (sIy —A)~! 0 _b]
L I = +AT)ICTC(sh, —A)~Y (sl +AT)7 1| |0

= bl (sl +AT) It C(sl,—A) b
N(—s)"N(s)

=G(—s5)TG(s) = TESOR

(2.38)

Using equation (2.38) and the fact that det (sl —A) = d(—s)d(s) in equation (2.37), we have

N(—s)"N(s) n

det(sE—H) = d(—5)d(s) x det(shy —A) = N(—s)TN(s).

(2): From Statement (1) of this lemma it is clear that 6(E,H) = roots (N(—s)"N(s)). Note
that

A € roots (N(—s)'N(s)) = —A € roots (N(—s)"N(s)).

Further, since N(—s)T N(s) € R[s], we must have
A € roots (N(—s)"N(s)) = A € roots (N(—s)"N(s)).

Thus, the roots of N(—s)TN(s) are symmetric about the real and imaginary-axis of the C-
plane. Therefore, N(—s)” N(s) = det(sE — H) is a even-degree polynomial. Let degdet (sE —
H) =: 2ng. Since 6(E,H)N jR =0 = roots (N(—s)'N(s)) = 0, we must have ng roots of
det(sE — H) in C_ and the rest ng in C. By the definition of Lambda-sets in Definition 2.18,
the collection of roots of det(sE — H) in C_ (or C.) is a Lambda-set of det(sE — H). |

Using the fact that the determinant of a Hamiltonian pencil is a even-degree polynomial that

admits a Lambda-set, we present the first main result of this section that provides a method to

compute the maximal rank-minimizing solution of an LQR LMI.
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A method to compute the maximal rank-minimizing solution of an LQR LMI

Theorem 2.30. Consider Problem 2.21 with the corresponding Hamiltonian matrix pair
(E,H) as defined in equation (2.11). Assume o(E,H)N jR =0 and det(sE —H) # 0.
Define degdet(sE —H) =: 2ng. Let A be a Lambda-set of det(sE — H) with cardinality
ng < n such that A C C_. Let Vi, Vop € R*®s and V35 € R'®s be such that the
columns of Vop = col(Vip,Van, Vi) form a basis of the ng-dimensional eigenspace of
(E,H) corresponding to the eigenvalues of (E,H) in A:

A 0 b|[Via L 0 0][via
—0 —AT 0||Vaal =10 L Of|[Voal|T, (2.39)
0 b 0]|Vs 0 0 0f[|wq

where o(I') = A. Construct Vp := col (Via,Vap) and assume ns :=n —ng. Define W :=
[E Ab ... Am—lp| € R22XDs yhere A and b are as defined in equation (2.12). Let

XA = [VA W} =: [%ﬁ] Then, the following statements hold.
(1) Xia is invertible.
(2) Kpax := X2AX1_A1 is symmetric.
(3) Knax is a rank-minimizing solution of LMI (2.9).
(4) For any other solution K of LMI (2.9), K < Kpax.

(5) Knax = 0.

We defer the proof of this theorem till the development of a few auxiliary results. Note the
close parallel between Proposition 2.19 and Theorem 2.30. For the case when ns = 0, i.e. the
regular LQR case, Theorem 2.30 is indeed equivalent to Proposition 2.19. Thus, Theorem 2.30
is a generalization to Proposition 2.19.

Now we relate the results in Section 2.3 with the Hamiltonian system Xy, defined in
Section 2.2.6. Using the parallel between the output-nulling representations of X, (in equation
(2.13)) and Xg,m (in equation (2.12)), we define P := K, L= Z, M:=c,Uy:=E,and U, :=
H. Further, we have degdet(sE — H) = 2ng. Therefore, Ng = 2ng and N¢ = N —Ng = 2n —
2ng = 2n¢. Thus, the dimension of the slow and fast subspace of the Hamiltonian system X,y
corresponding a singularly passive SISO system is 2ng and 2n¢, respectively. Hence, Theorem
2.24, Theorem 2.25, and Lemma 2.26 can be directly applied to the system Xy,n. From Lemma
2.26 it is evident that img [%ﬂ is the largest good (K,Z)-invariant subspace inside the kernel

of ¢. Hence, the good slow subspace of Xyay is given by 0, = img[“gﬁ

Theorem 2.24, it is also evident that img W C %, where W is as defined in Theorem 2.30 and
X, is the fast subspace of Lyam.

] . Further, using

Before we start developing the results required for the proof of Theorem 2.30, we review
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a result that establishes the relation between the basis vectors of the left- and right-eigenspaces
of Hamiltonian matrix pair (see [IOW99] for more on these properties).

Proposition 2.31. [IOW99, Proposition 6.18] Let the columns of Vep = col(Via,Van, Vaa) span
the eigenspace of (E,H) corresponding to the eigenvalues in A, where E,H ,Vix,Vop,V3p, A are

as defined in Theorem 2.30. Then, the following statements are true:

(1) Rows of V2€\ —Vla V3TA] are the basis of the left eigenspace of (E,H) corresponding
to eigenvalues in —A.

(2) VL Van =V Via.

These properties of the eigenspaces of (E,H) is crucially used in the sequel. Now we develop
the results required for the proof of Theorem 2.30. The first step in the proof of Theorem 2.30

is the following theorem:

Disconjugacy of an eigenspace of the Hamiltonian matrix pair

Theorem 2.32. Let Vip be as defined in Theorem 2.30. Then, Vi is full-column rank.

Since Vep = col(Vip, Vaa, Vaa) is a basis of the eigenspace of (E,H), in terms of Defini-
tion 2.22, Theorem 2.32 establishes that the subspace img Ve is disconjugate. We develop the

proof for the disconjugacy of img V.4 in the next section.

2.4.1 Disconjugacy of img V.

In this section we prove Theorem 2.32 using a few auxiliary results. The main result that
helps us to prove Theorem 2.32 is the claim that the good slow subspace of Xy, i.€., Oy =
img [“gﬁ] can be decomposed into two subspaces. Such a decomposition not only helps us in
proving Theorem 2.32 but also provides significant insight into the computation of the optimal
cost of a singular LQR problem. One of the subspaces obtained during such a decomposition
is linked with the good slow subspace of the system X itself. Hence, we first reveal the link
between the good slow subspace of the system X and the good slow subspace of X, in Lemma

2.34 using a well-known proposition from [Won85] next.
Proposition 2.33. [Won85, Lemma 5.8] Define the family

By = {¥ CR*|IF € RV™ such that (A+bF)V CV,0¥ =0,06((A+bF)|y CC_}.
Then, Py has a unique supremal element.

Note that the unique supremal element of Ay is indeed the largest good (A, b)-invariant
subspace in the kernel of Q. In the next lemma we establish the relation between this subspace
and the subspace 0y, = img [%ﬂ of Ham.
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Relation between the supremal element of %y and the good slow subspace of Xym

Lemma 2.34. Let Vg := sup Ps. Suppose Vg € R**€ be such that Vg is full column-rank
and img Vg = V. Define Vepam := img[o‘:gg]. Let Vip,Vop be as defined in Theorem

2.30. Then, Vpran < img| 1|,

Proof: Recall 0,,, = ing [“gﬂ Since Y5 = img Vg € s, there exists F € F(¥g) such that
(A+bF)Vg = VgJg, where Jg = (A +DF )|y, and 0(Jg) C C_. Define V3g := FVg. Then,

A 0 b[|Vg| [ O OV ~ | Vg Vg
T A b by, O
—Q —AT 0010ag|=|0 I O] |Ong|Jg= | 1|0ng|=| " | |Ong| g (2:40)
C
0 b 0] V3 0 0 0|V Vag Vag

Thus, 6(Jg) C o(E,H). Using Proposition 2.10 in equation (2.40) we can infer that Ygpum =
img [ OZZ} is an (A\,E)-invariant subspace. Further, using the fact that E[O‘fg} = 0 in equation

(2.40), it is evident that g4y is an (A, b)-invariant subspace inside ker ¢ with o(Jg) € C_.
Since 0y is the largest good (K, b)-invariant subspace inside ker ¢, we have Ygpm C O)ye. B

. Vi . ~ . .
Since img [Ongg] C img [“gﬂ and img [“gﬂ is the largest good (A, b)-invariant subspace inside

~ . . V, . .
kerc, it is evident that img [0 & ] can be extended to img [“gﬂ . The next lemma deals with
n7g
such an extension.

Decomposition of the good slow subspace of the Hamiltonian system Xy

Lemma 2.35. Let Vo, Voo € R2*(™8) pe such that [Ozgg “26} is full column-rank and
, e

img [OZZ X‘g:] = Oy, where O,y = img [“22] with Via, Vo as defined in Theorem 2.30
and Vg is as defined in Lemma 2.34. Then, the following statements are true

(1) Vae is full column-rank.

(2) [Vg Vle} is full column-rank.

~

Proof: (1): Since [Vg Vle} is (A,E)—invariant inside ker ¢, by Proposition 2.10 we have

0 Ve
Ve Vie
Cimg| & ! = {0}
0 Ve
~f . [vie Ve Vie| . = (. [Vie
=A| img : Cimg| © : +img b and ¢ img ! = {0}.
Vae 0 Vi

VZe
Hence, there must exist V3o € R1*(®78) T, c R&*(1~8) and 'y, € R®=—8)x(1:-8) gych that

A\ Vle
VZe

+imgb and E(img

Ve
0

_ Vle

I+

0. (2.41)

~ |V
Fzz — bV3e and ¢ [Vle]

2e 2e
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Now writing equation (2.41) and equation (2.40) together, we have

A 0 bV Vie] [m 0 0][Ve Vie

T _ Jg I
0 AT 0| |0 Vao| =10 R O] |0 Vi [* (2.42)
0 b7 0] |[Vsg Vae] [0 0 0] [V3g Vae .

Since img [Ozgg “26] = O\, from equation (2.42) we have ¢ ([Jég g;]) CCo=o0(I'pn) <

C_. From equation (2.42) we have the following equations:

AVie +bV3e = Vel'1n + Viel 2, (2.43)
—QVie —ATVag = VoI, (2.44)
b Vae = 0. (2.45)

From Statement (2) of Proposition 2.31, we can infer that

0 Vy
2 [Vg Vle}: )
e

le

VEVe =0,

(2.46)
VIVie = VI Vae.

0 Vao| =

Now pre-multiplying equations (2.43) and equation (2.44) with VzTe and —Vf;, respectively and
adding, we get

VoAV + Vi bVie + VILOVie + VLA Vag = VI VD10 + Vi Viel o — Vil Vool (2.47)
Using equation (2.45), equation (2.46) in equation (2.47) , we have
VEAVIe+VEOVie+VEATV, = 0. (2.48)

To the contrary, let us assume V;e is not full column-rank. Therefore, there exists a nonzero
w € R(®~8) guch that Vaew = 0. Pre- and post-multiplying equation (2.48) with w’ and w,
respectively and using Vaew = 0, we get w! VL OView = 0. Since Q > 0, we must have

OView =0 = kerVp, C ker (QV]e). (2.49)
Post-multiplying equation (2.44) with w, we have
—QView —ATVaew = Vo Toow = —AT Vaew = Voo I'ppw = ker Vae is Ipp-invariant.  (2.50)

Therefore, from equation (2.50) it follows that there exists a full column-rank matrix T ¢
R®:=8)%® such that Voo T = 0 and [ppT = Tf, 6(1:) C o(I'y) € C_. Further, from equation
(2.49), we must have QV;.T = 0. Post-multiplying equation (2.43) by T, we get

AV T + V3o T = Vel 1oT + V1T T = AV1 T 4 bV3 T = Vg['1oT + V; TT. (2.51)

Using Proposition 2.10 combined with the fact that img V, is a good (A, b)-invariant subspace
of the system and o(I') C C_, we infer that img [Vg V1eﬂ is also a good (A, b)-invariant
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subspace. Further, Q [Vg Vleﬂ = 0. Thus, img [Vg Vleﬂ € Py, where Py is as defined
in Proposition (2.33). Since ¥; = sup %y and img V; = ¥, we must have img [Vg Vlef] =
V. Therefore, there exist o; € R® and a nonzero & € R*® such that Vot + Vlefocz =0, 1ie.,

o T ~ ~
[Vg Vle} [~ ! } = Vgal—HﬁeTaZ = 0. Note that since T is full column-rank, 7 ¢ # 0. Thus,
0 Vpe Ton Voo T Oty

o .. Vo V. .. ..
we have a nonzero vector [T 0152] inside ker [ Og Vée} . This is a contradiction to the fact that
e

[‘gg ge} is full column-rank. Thus, V5. must be full column-rank.
e

(2): To the contrary, assume that [Vg Vle] is not full column-rank. Then, there exist
B, € RE and B, € R®€) such that [g; } £0and Vg +ViefBs = 0.

Now pre-multiplying equation (2.43) with VZTe and adding it to the transpose of equation
(2.44) post-multiplied with V;, we have

VLAVl + ViobVse — VEOVie — VI AVIe = ViVl + Vi Viela + T3Vl Vie.  (2.52)
Using equation (2.45) and equation (2.46) in equation (2.52), we have
I Vi Vie + Vi Vil = —VILOVie. (2.53)

Let us assume that there exists a nonzero y € ker (V,L Vi¢). Pre- and post-multiplying (2.53) by

y! and y, respectively and using equation (2.46) we have
VT5VaeViey +3 VaVielny = =3 VigQViey = ¥ VigQViey = 0= QViey = 0. (2.54)
Now, post-multiplying equation (2.53) with y and using equation (2.54), we have
VL VieIy =0 = ker (VL Vi,) is I'ps-invariant. (2.55)
using equation (2.55) and the fact that 6(I"22) C C_, we have
3 anonzero g € C®~8 guch that [yq = pg and V,LVieg =0, where u € C™. (2.56)

Post-multiplying equation (2.44), by g, we have —QVieq +ATVreq = V2eI'ng = AT Vooq =
UVaeq. If Vooq is nonzero, then it is a left-eigenvector of A. However, from equation (2.45)
we can infer that (Vs.q)” b = 0. This means that the system (A, b) is uncontrollable. This is a
contradiction. Therefore, Vg must be a zero vector. Now from the fact that V,, is full column-
rank (Statement (1) of this lemma), it is evident that ¢ = 0, which contradicts equation (2.56).
Thus, our initial assumption that there exists a nonzero vector y in ker(VzTevle) is not true.
Hence, ker (V,LVie) = {0}.

Recall that we have assumed V81 + Vie 3> = 0. Pre-multiplying this equation with VzTe,
we have VL VgBi + VL Vi 2 = 0. Using equation (2.46) and the fact that ker (V. Vi) = {0},
we have V.. Vief, = 0= B, = 0. Thus, we have VeBi+ VieBr = 0= Vg = 0. However, since
Vg is full column-rank, we must have B; = 0. This is a contradiction to the fact that [gﬂ #0.
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Hence, [Vg Vle] is full column-rank. ]

Now using Lemma 2.35, we proceed to prove Theorem 2.32.

Proof of Theorem 2.32: Since img[“gﬂ - img[I(/)g “jﬂ where V, € R2€, and Vi, Ve €
e

R**(2:~8) j5 as defined in Lemma 2.35, we must have img Vix = img [Vg VleI . Note that the

number of columns of V;5 and [Vg VIeI are the same. Hence, from Statement (2) of Lemma
2.35, it follows that V4 is full column-rank. |

Since V4 is full column-rank, it follows from Definition 2.22 that img VA is disconjugate. This
property of disconjugacy is crucially used to prove Theorem 2.30. Apart from this property,
there are a few more identities that are required to prove Theorem 2.30. We present these
identities as two lemmas in the next section. However, before progressing to the next section,
we present a figure next (Figure 2.2) that shows the decomposition of the state-space of Xyam

in terms of the subspaces we introduced in this section.
R?": State-space of the Hamiltonian system
Slow subspace of dimension 2ng @ Fast subspace of dimension 2n¢
I
} I
Good slow subspace: img [V;ﬂ @ Bad slow subspace
Dimension: ng Dimension: ng
I

| |
ing[¥] @ img[y]

Figure 2.2: A direct-sum decomposition of the state-space of the Hamiltonian system Xy,

2.4.2 Auxiliary results for the proof of Theorem 2.30

In this section we present two lemmas that establish a few identities involving the system matri-
ces (A,b), Markov parameters of X, cost matrix Q and a solution K of the LQR LMI (2.9).
These identities are crucially used in the proof of Theorem 2.30.

Identities involving the Markov parameters of the Hamiltonian system and Q

~

Lemma 2.36. Let (g, ,C), Q and ns be as defined in Theorem 2.30. Then, the following

Statements are true.

(1) ¢A*b =0 for k€ {0,1,...,2(ns — 1)}.
(2) QA'b =0for £ € {0,1,...,n; —2}.

(3) A’ = col(A’b,0) and A" = |0 (—1)13(A4b)T]for£e{0,1,...,nf—1}.

Proof: (1): We define P := ;1\ L:= E M :=c,U; :=E, and U, := H in Lemma 2.23. Further,
we have degdet(sE — H) = 2ns. Therefore, Ny = 2ng and Ny = N — Ng = 2n — 2ng = 2ns.
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Therefore from Lemma 2.23 Statement (/) immediately follows.
(2) and (3): Now, we use induction to prove these statements.

Base case: (¢ =0) Using Statement (/) of this lemma we have

A 0
—Q AT

b

CAD =0 = [om bT} o

] =b'0b=0. (2.57)

Since Q > 0, using the property of positive-semidefinite matrices in equation (2.57) we get
Ob = 0. Further, b = col(b,0) and ¢ = [o bT} by definition.

Induction step: Let QA’h = 0y, Alp = col(A’h,0,1), and CAl = |:Ol,n (—1)€bT(AT)q ,
where ¢ < ng — 2. We prove that

QA =0y, A™'b=col(A"'D,0,,), and cA"t! = [ol,n (—1)f+1bT(AT)f+1].

Note that
g | A0 A'b| | A™p | AT
—Q —AT| [0a1] [-0A'b] | Oni ]
~ A 0
A+ Lol — 14 4 14 14 — 14 ¢
A =[on -1y _AT]—[(—l) (QAD)T (=) A1) | = |oa (—1) (A% 10)7].

Since ¢/ < nf —2 = 2+ 3 < 2ns — 1, using Statement (/) of this lemma and the induction

hypothesis, we have

Aerlb
0

A 0
—0 -AT
= (A%1)T QA1) = 0= QA**1h = 0 (Since O > 0).

A h=0= (@ATHARTB) =0= [0 (~) A [ —0

This completes the proof of Statement (2), and Statement (3) for £ € {0,1,...,n¢s —2}.
In what follows we complete the proof of Statement (3) by proving the identity for the
case £ = ns — 1. Using the fact that QA" ~2p = 0 from Statement (2) of this lemma, we have
A= lp
| Q ) ALt -2 b

A~ 1p
On,l

AR 2
On,l

A 0

Ane 1 =
—Q AT

Similarly,
EA\nf*I _ [(_l)nf—1<Anf—2b)TQ (_l)nf—l(Anf—lb)T] — [Ol,n (_l)nf—l(Anf—lb)T]_

This completes the proof of Statement (3) of this lemma. |

Algebraic relations satisfied by the solutions of an LQR LMI

Lemma 2.37. Let K be any solution of the singular LOR LMI (2.9) with degdet(sE —
H) =2ng and n¢ :=n —ng, where (E,H) are as defined in Theorem 2.30. Then, for any
ac{l,...ne—1}, KA% = 0.
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Proof: We prove this using induction and Lemma 2.36.

Base case: (a = 0) Since K is a solution of the LQR LMI (2.9), Kb = 0 is trivially true.
Inductive step: Suppose o < ng — 1. Assume KA(®1p =0, we show that KA%b = 0 . Pre-
and post-multiplying .Z(K) := ATK + KA+ Q by (A DUp)T and A(@Dp, respectively, we
get (A Dp)T 2(K)(A(®~1b) < 0. Opening the brackets and using the inductive hypothesis
this inequality becomes (A(*~Vp)TQ(A(®~1)p) < 0. Further, using Statement (1) of Lemma
(2.36) in this inequality, we get (A(“l)b>TQ (A(“*l)b> — 0= Z(K)A@ Dp =0 (Since
Z(K) > 0). Expanding this equation and using inductive hypothesis with Statement (1) of
Lemma 2.36 gives KA%b = 0. |

Now that we have developed all the crucial results required to prove Theorem 2.30, in the

ensuing section we prove Theorem 2.30.

2.4.3 Proof of Theorem 2.30

Proof of Statement (1) of Theorem 2.30: Partition W =: [%;] , where W, W, € R**?¢, Using

Statement (3) of Lemma 2.36, it is evident that

24} PPN ~ s b Ab --- AM—1p le[b Ab ... AmMTlp|.
W= :[b Ab ... Ame b}: =
W, o o0 --- 0 W2:0n,nf-

(2.58)

XA

= . Then, we need to prove that Xjp =
Xon

Therefore, X5 = [XA W} =

Vin Wi
V2A On,nf

[Vl A Wl] is invertible.
Note that since Vj4 is full column-rank (Theorem 2.32), there exists F € R!*® such that
Vap = FVia. Thus, from equation (2.39), (A + bF)V]A = VjAl. Define

Wiei=[b (A+bF)b - (A+bF)™~'b].

Then, clearly img W) = img Wig. Since X is controllable, W is full column-rank < WiF is also
full column-rank. Thus, proving Xj, is invertible is equivalent to proving X = [Vl A W]_F]
is invertible.

Now, we extend the columns of Vi to form a basis of R", say B. Without loss of gen-
erality, we assume that the matrices A,b are represented in the basis B. Since Vi, is (A,b)-

invariant, in the new basis (A + bF) must have the following structure A + bF = [Aél 212} ,
2

where A € R and Ay € R(®-0e)x(m1s) - Conforming to the partition in A + bF, we par-

tition b =: [21 } . Note Vi in the basis B is of the form [I’(‘)S ] . Further, Wi in this new basis B
2

has the following structure

by * ‘e *

1_72 Azzi?z e Anf*ll_?z

] , where x are suitable matrices with elements from R.
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Since the system is controllable, we have (A,b) controllable < (A + bF,b) controllable =
(A2, b) is controllable. Therefore, T := [[32 Anby - Anf”[}z} € R® %21 g a nonsingular

matrix. Now, note that the matrix X;5 = [Vl A Wj_F:| in the basis B takes the form [1165 ﬂ

Thus, X;4 is a block upper-triangular matrix with the diagonal blocks I,_ and T being nonsin-

gular. Therefore, X 1A 1s invertible and hence X 4 is invertible. [ |

Proof of Statement (2) of Theorem 2.30: To prove XZAXfAl = (XQAXf[\l)T is equivalent to
proving X[\ Xop = X7, Xi. Hence instead of proving XgAXI_A1 = (XzAXl_Al)T we prove that
XITAXQA _XZTAXH\ = 0. Now, using equation (2.58) to evaluate XITAXZA —X2TAX1A, we get

v VI VEVoA —VEVIA —VLI W,
X\ Xon — XopXia = l[; [VZA On,nf} —| [Vm Wl] =" . o AT (2.59)
Wl Onf n Wl Vaa Onf Df

From Proposition 2.31, we have VlTAV2A = VZTAV1 A- Hence, to prove XlT AX2A —XzT AX1A =0, we
need to prove that VZTAWl = 0. From equation (2.39), we have

—QViA —ATVop = VoAl = VL, 0+ VA =TTV}, (2.60)

We first prove that VZTAAkb =0for k € {0,1,...,ns — 1} using mathematical induction.

Base case: (k= 0) V)b =0 follows from equation (2.39).

Induction step: Let VZC\Akb =0 for k <nf — 1. We prove that V2TAAk+1b = 0. Post-multiplying
equation (2.60) with A*b gives V[, QA*b + VI A**1b = —TTV] Akb. Since k < ns — 1, we
know that QAFb = 0 (Lemma 2.36). This equation along with the inductive hypothesis imply
that VZTAAk“b = 0. Hence, by mathematical induction, we have proved that sz\Akb =0 for
ke {0,1,2,...,ns — 1}. In other words, we proved that

Vi b ab - Anf—lb] —0= VLW =0. 2.61)
Thus, from equation (2.59), we have X[, Xoo = X7, X; . Therefore, Xoo X, is symmetric. W

Proof of Statement (3) of Theorem 2.30: Define % (Kyax) := AT Knyax + KnaxA + Q. Evalu-
ating XIT AL (Knax) XA, We get

X\ Z (Knax)X1A = (2.62)

VIY;\D%(KmaX)VIA Vljj\g(Kmax)Wl
WlT"E/ﬂ(KmaX)VlA Wng(Kmax)Wl

Note that

KuaxVia = Xoa X Via = [VZA Wz] [Vm Wl] - Via=Vaa

Kuox Wi = [VQA Wz] [Vl A Wl] Wi = W, = 0 (From equation (2.58)).
Using the fact that Kp.,Vian = Vo and evaluating VITAX (Knax)Via gives

A 0

VINZ (Kuax)Vin = VIA(AT Kuax + KnaxA +0)Via = V], V], 0 T

[VIA] (2.63)

Voa
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Using equation (2.39) and Proposition 2.31 in equation (2.63), we have

1% b
VI -Z (Knax)Via = [VZTA —vlﬂ M= 7| vap | = VI bV3A =0. (2.64)
Vo 0
Using W5 = 0 to evaluate V[, .2 (Knax )W gives
Vi L (Kyax)Wi = VI, AW| + VL, QW (2.65)

Post-multiplying equation (2.60) by W} and using it in equation (2.65) gives
VL (Knax)W1 = VI, QW) + V] AWy = —TTV] Wy, (2.66)

From equation (2.61), we have VZTAWl = 0. Thus, VlTAZ (Knax)W1 =0.
Since Kp2xW; = 0, we must have

Wi L (Knax)W1 = WL AT Kyax W1 + W/ Kpax AW, +WE QW = Wl QW

Now, using Statement (/) of Lemma 2.36, we have

0 0
WTQW] — (nf—l),(nf—l) (nf—1)7l . (267)
1 [ 01’(nf71) (Anfflb)TQAnfflb

Thus, using equation (2.67) in equation (2.62), we have

Om—1),@-1) Om—1),1

X[\ (Knax)X1a =
1A ( ) 1A 017(11_1) (Anf—lb)TQAnf—lb

. (2.68)

Since Q > 0, we have (A%~ !b)T QA ~!h > 0. Therefore, XlTAZ(KmaX)XlA > 0. Since Xj4 is
invertible and .# (Kyay) is symmetric, by Sylvester’s law of inertia> .2 (Kyax) > 0. Next using
Statement (2) of this theorem and the fact that VZTAb = 0 from equation (2.39) we have

ViA

Kuaxb = Xoa X\ b = (X)) X30b = (X )T bh=0. (2.69)

Thus, Kpax 1s a solution of the LQR LMI (2.9). From equation (2.68), we therefore infer that
rank of .Z(Kpax) is either O or 1.

Note that rank(.% (Kgax)) = 0 is equivalent to .% (Kpax) =0, i.e., AT Kpax + KpaxA+ Q=0
and Kyaxb = 0. The equations ATK+ KA+ Q =0 and Kb = 0 are the constrained generalized
continuous ARE (CGCARE) corresponding to the LQR Problem 2.21 (see [FN14], [FN18] for

2The inertia of a matrix A € R®*™ is as the set {n, ,ng,n_}, where n, and n_ are the number of eigenvalues of
A with positive and negative real parts, respectively (counted with multiplicity) and ng is the number of eigenvalues
of A on the imaginary axis (counted with multiplicity).
Sylvester’s law of inertia: Consider two symmetric matrices A, B € R®*®, Then, there exists a nonsingular matrix
P € R®® such that A = PT BP if and only if the inertia of A and B are the same. [Ber08, Corollary 5.4.7]
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more on CGCARE). Interestingly, in Chapter 3 we show that a necessary condition for solvabil-
ity of CGCARE is det(sE — H) = 0. Since in this theorem det(sE — H) # 0 by assumption,
CGCARE is not solvable here. This implies that £ (K) =0, i.e., rank(.Z(K)) = 0 is not pos-
sible in our case. Therefore, the minimum rank that can be attained by LQR LMI (2.9) is 1 and
% (Knax) attains this rank. [ ]

Proof of Statement (4) and (5) of Theorem 2.30: Note that proving Statement (4) of this theorem
is equivalent to proving that K — Kp,x < O for all K that satisfies the LQR LMI (2.9). We prove
this in two steps. First, we prove that for Vi, defined in the theorem, A := VS\(K — Knax)Via
satisfies a suitable Lyapunov inequality (see equation (2.76) below). Then, using this Lyapunov
inequality we finally show that K — Kp,x < O for all K that satisfies the LQR LMI (2.9).

Step 1: Note that for all (x,u) that satisfies 4x = Ax + bu, evaluation of 4 (x” Kx) +xT Qx
results in the following equation:
d
% (xTKx) +xT Ox = T Kx + x" Kx +x" Ox

= (Ax+bu)T Kx+ x" K (Ax + bu) +xT Qx

]

T
Since K is a solution of the LQR LMI (2.9), using the fact that [A K;“TI?JFQ If)b ] > 0 1n equa-
tion (2.70), we have

X

ATK + KA Kb
+KA+Q , forallt € R. (2.70)
u

bTK 0

T

x| |[ATK+KA+Q Kb| |x

d . r T
J— + —
(x" Kx)+x" Ox T

- >0, forallt € R. (2.71)

From equation (2.39), we know that AVi5 + bVizp = Vipl'. Further, since Vi, is full
column-rank (Theorem 2.32), we infer that there exists F € R!*®s such that FV; 5 = Vaa. There-
fore, we have (A + bF)Viy = ViAI. Thus, corresponding to an initial condition xo = Vizf,
where € R, %5 := Vipel B, iis := FVipe'" B must satisfy %x = Ax+ bu. Using X5 in equa-
tion (2.71), we have

d d
E()Zglozs) + i Q0% > 0= E()zgms) > il Ox,, forallt € R. (2.72)

Note that &5 = Viale!"B = (A + bF)Vipe!’B (Since (A +bF)Vip = ViAD). Since Kgay is a
solution of the LQR LMI (2.9), using the fact that K, o6 = 0 we have

d . .
E (XgKmaxxs> +)E£st - XsTKmaxxs +X£Kmaxxs +X£Qfs

= BTV (A+bF)T KnaxVine" B+ BTe" 'V Kuax (A + bF)Vipe' ‘B + 3L Ok,
= BTe" 'V (AT Kyax + KuaxA + Q)Vine' B, for all t € R. (2.73)

From equation (2.64), it is evident that the right hand side of equation (2.73) is 0. Therefore,

d
- (%L Knax¥s) = —%L O%s, forallt € R. (2.74)
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Subtracting equation (2.74) from inequality (2.72) gives % (X2 (K — Knax)Xs) = %' (K —
Kuax)Xs + XL (K — Kpax )%s > 0, for all £ € R. On using Xs = Vjxe!’ B and &g = VipTe'’ B in this

inequality, we get

(Viae"TB)" (K — Knax) (Viae''B) + (Viae" B)" (K — Knax) (Viae"'TB) > 0, forallz € R
(2.75)

Since inequality (2.75) is true for all 7, evaluating it at # = 0, in particular, we get BT (T'T V], (K —
Knax)Via + Vi\ (K — Knax)VIAD) B = BT (TTAp +AAT) B > 0, where Ap := V], (K — Knax)ViA-

Since this inequality is true for all B € R™s, we have
ITTAA+AAT > 0, where Ay = Vi (K — Kgax)ViA. (2.76)

This ends the first step of the proof.

Step 2: Note that since X is nonsingular and K — Ky a5 is symmetric, proving K — Kpax <
0 is equivalent to proving that X IT A (K — Knax)X14 < 0 (by Sylvester’s law of inertia). Hence, we
prove X!\ (K — Knax)Xi1a < 0 in the sequel.

Note that Xjp = [Vl A Wl] , where W is as defined in equation (2.58). On evaluating

X IT A (Knax — K)Xj A, we therefore have

X[\ (K — Knax)X1A = 2.77)

W] (K — Knax)Via W (K — Kuax)Wi

VlTA (K - KmaX>V1A VlT (K - Kmax)“’l]

Since W) = [b Ab -~-Anf‘1b} (equation (2.58)), we have from Lemma 2.37, KW| = 0 and
KnaxWi = 0. Therefore, (K — Kpax )W) = 0. Thus, from equation (2.77) it follows that

X[\ (K — Kpax) X4 = (2.78)

0 0 0 O

VI (K = Knax)Via 0] _ [AA 0]

Since o(I") C C_, from equation (2.76), we have Ax < 0. Using this negative-semidefiniteness
property of Aa in equation (2.78), we infer X]\ (K — Knpax)Xian < 0 < K — Kpax < 0. This
completes the proof of Statement (4) of the theorem.

Note that O is a solution of the LQR LMI (2.9). Thus, from Statement (4) of Theorem
(2.30) we must have 0 < Kpax. Thus, Statement (5) of the theorem is proved. [ |

Interestingly, from Step 1 of the Proof of Statement (4) of Theorem 2.30 above, we can infer that
the difference between the maximal rank-minimizing solution Ky, of the LQR LMI (2.9) with
any other solution K of the LQR LMI when restricted to the space img Vj4 satisfies a Lyapunov
inequality of the form given in equation (2.76). We present this as a lemma next. For the ease
of exposition we call the difference K — Kyax the maximal gap of K (see [Wil71] for more on

the use of the term gap).
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Maximal gap of K restricted to img Vj satisfy a Lyapunov inequality

Lemma 2.38. Consider the singular LOQR Problem 2.21. Let Vip,Kpax, and I be as
defined in Theorem 2.30. Assume K to be any solution of the LOR LMI (2.9). Define
Ap = V]TA (K — Kuax)Via € R?s*2s. Then, Ay satisfies the following Lyapunov inequality:

TTAA+AAT > 0.

Proof: The proof follows from Step 2 of the proof of Statement (4) of Theorem 2.30. |

In order to demonstrate that Theorem 2.30 finds the maximal rank-minimizing solution
of the LQR LMI (2.3), we revisit Example 2.20 that we have previously failed to solve using
Proposition 2.19.

Example 2.39. Note that in Example 2.20, we have n = 3 and ng = 1. Thus, nf =n—ng = 2.

Therefore, using Theorem 2.30, we have

1

Via b Ab '

va wl= " — |2
Van 0 0 2

0

OOoOO—OO
U

0
1
0
0
0
0

2
Therefore, Kpax = XZAXI_AI = [ 0 01. It can be verified that LOR LMI (2.9) evaluated at

4020
Knax gives L (Kyax) := 8 8 (1) 8 > 0. Further, rank(Kyax) = 1. This is the minimum rank
0000

achievable by the LOR LMI (2.9) (see proof of Statement (3) of Theorem 2.30 for the justification
of the LOR LMI’s minimum rank being 1 in this case). Further, Kyax is also the maximal
solution of the LOR LMI (2.9) (see proof of Statement (4) of Theorem 2.30 in Section 2.4.3 for a
Jjustification of this claim). Thus, from the example it is clear that Theorem 2.30 indeed provides
a method to compute the maximal rank-minimizing solution of an LOR LMI corresponding to a

singular LOR problem.

Recall from Statement (/) of Theorem 2.30 and equation (2.58) that X;, can be written as

X
X\ = | A
Xon

Vin Wi
V2A On,nf

Thus, we have Xjp = [Vl A Wl] and Xpp = |:V2 A 0n7nf] . Further, from Lemma 2.35, we know

Vle

. Vg s VIA . .
that img |:0n,g VZe] = img [VZA] and [Vg Vle] is full column-rank. Hence, the matrix X4,
without loss of generality, is given by Xj5 = [Vg Vie Wl] and the corresponding X, matrix

is then Xop = [Ong Voe Omnf] . Since X 4 is invertible (Statement (/) of Theorem 2.30), it is
evident that the columns of X, can be assumed to be a basis for R®. Hence, the state-space of

the system X can be decomposed in the following subspaces:
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R*: State-space of a system
W = imgW, ., YV i=1imgVip

|
| |
Vg = imgV, b Vo :=img Vi,

Figure 2.3: A direct-sum decomposition of the state-space R*

Note that the subspace 75 in Figure 2.3 is the g-dimensional good slow subspace of the
system X. Further, the dimension of % is ns and that of ¥ is n — (g + n¢). From Figure 2.3, it

is evident that any initial condition xy € R™ of the system X can be decomposed as
X0 =: Xgs + X0 +Xes, Where xgs € Vg, X0 €=: ¥/, and Xes € Ve (2.79)

This leads to some interesting facts about the optimal cost of a singular LQR problem. The first

among them is as follows:

Optimal cost of an LQR problem

Corollary 2.40. Consider the LOR Problem 2.21 and let Kyax be the maximal rank-
minimizing solution of the corresponding LOR LMI (2.9). Assume xo =: Xgs + X0t + Xes
to be an initial condition of the system ¥ as defined in equation (2.79). Then the following

statements hold:
(1) xgsKmaxxgs =0.
(2) ngKmaxxOf =0.

(3) The optimal cost of the LOR problem is xeTSKmaxxeS.

Proof: (1): Letxgs := Vg, where o € RE. Note that
-1
Knaxgs = KaaxVg® = XonXi\ Vg = [Ong Vae One| Vs Vie Wi| Vga=0. (2380)

Therefore, xgsKmaxxgs = OCTVgTKmaXVgOC =0.
(2): Let xos := W, B, where B € R™. Note that

—1
KuaxXot = KnaxWi B = [on,g Vae on,f} [Vg Vie Wl] WiB = 0. 2.81)

Therefore, ngKmaXXOf = ,BTW1TKmaxW1 B =0.

(3): From [Sch83], it is known that the optimal cost corresponding to the LQR Problem 2.21 is
given by xg KunaxXo, where Kpax 1s the maximal rank-minimizing solution of the LQR LMI (2.9).
Hence, using equations (2.80) and (2.81) and evaluating the optimal cost for the LQR Problem
2.21, we have

ngmaxxO = (xgs + Xes +x0f)TKmax (xgs + Xes +x0f) = xgsKmaxxes- (2.82)
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This completes the proof of the corollary. |

From Corollary 2.40 it is evident that if the initial condition of the system is from % or 7
then the cost incurred by the system is zero. This corroborates the findings in [WKS86]. Thus,
the optimal cost of an LQR problem depends only on the maximal rank-minimizing solution of
the corresponding LQR LMI and the projection of the initial condition of the system onto the
subspace Ye.

Next we look at a special case of LQR problems when the system admits the zero matrix
as the only solution to the corresponding LQR LMI.

A sufficiency condition for Kyax = 0

Corollary 2.41. Consider the singular LOR Problem 2.21 with assumptions as given in
Theorem 2.30. Consider dim(sup $Bx) = ns, where Py is as defined in Lemma 2.34.
Then, Kpax = Op q.

Proof: Since dim(sup %s) = ng and dim(0,s) = ng, from Lemma 2.35 it is evident that

img [OVg ] = img [22] . Therefore, Vo5 = Op . Further, from equation (2.58) we have W, =
nng

0. Therefore, X4 = 0 and hence using Theorem 2.30, we must have Kpax = Oy pn. [ |

The next corollary states that if the transfer function induced by the cost-matrix Q and the
system X is minimum-phase, then the optimal cost of the corresponding LQR problem is zero.

Optimal cost of LQR problems: minimum-phase case

Corollary 2.42. Consider the singular LOR Problem 2.21 with rankQ = 1 and (Q,A)
observable. Let ¢ € R"™ be such that Q = ¢’ c. Define G(s) := c(sl, —A)~'b. If the

system G(s) is minimum-phase, then the optimal cost of the LOR problem is zero.

Proof: Recall A, b, are as defined in equation (2.12). Define det (sl —A) =: d(s). Therefore,
det(shy —A\) =d(s)d(—s). Since the system is (A,b) controllable and (Q,A) observable, there

exists a real-polynomial n(s) such that G(s) = % with n(s) and d(s) are coprime.

Note that det(sE — H) = det [slzn:A —Ob} — Clshn —A) "D x det(shn — A) =: p(s).
—C
Further, by simple multiplication it can be seen that

N ~_1=~  n(=s)n(s s
G(~5)G(s) = (sha —A) b = dE—si d((s)) =X fs()c)i oL
Therefore, p(s) =n(—s)n(s). Since |6(E,H)| = 2ns = |roots p(s)| = 2ns = |roots (n(s))| =
ng. Since G(s) is minimum-phase, roots(n(s)) C C_.

Consider the system %x = Ax+bu and y := cx. Note that this is a SISO system which
is (A,b) controllable and (Q,A) observable = (c,A) observable. Therefore, as discussed in
Section 2.2.4, 6((A 4+ bF)|sup ;) = rootnum(G(s)). Therefore, dim(sup %yx) = ns. Hence,
by Corollary 2.41 we have Kyax = On n = the optimal cost is zero. [ |

Note that Corollary 2.42, albeit for single-input systems, corroborates the findings on minimum-
phase systems in [Fra79, Theorem 2] and [KS72].
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2.5 Summary

In this chapter, we presented a method to compute the maximal rank-minimizing solution of an
LQR LMI corresponding to a single-input system (Theorem 2.30). We developed this method
using the notion of fast subspaces (strongly reachable subspace) and slow subspaces (weakly
unobservable subspace) of Hamiltonian systems. We showed that augmenting the basis of the
good slow subspace of the Hamiltonian system X, with the basis of a subspace of the fast
subspace of Xy, is the crucial idea that leads to the method. While developing this method, we
also showed that the fast subspace and the slow subspace of a SISO system can be characterized
in terms of its Rosenbrock system matrix (Theorem 2.24 and Theorem 2.25). Further, we also
showed that the good slow subspace of the Hamiltonian system is disconjugate (Theorem 2.32).

The relation between slow and fast subspaces with singular optimal control was already
known in the literature. In this chapter, in order to get the maximal rank-minimizing solution of
the LQR LMI we linked these well-known notions to the corresponding Hamiltonian system.
Application of the notion of slow and fast subspaces to the Hamiltonian system not only leads
to a method to compute the maximal rank-minimizing solution of the LQR LMI, but also leads
to results that corroborate some of the findings in the literature (Corollary 2.42). Hence, the
primary contribution of this chapter is the idea that, unlike the approach in [HS83], [Wil81],
[WKS86] where the notion of slow and fast subspaces were applied to the system, the applica-
tion of these notions of slow and fast subspaces to the Hamiltonian system brings out further
insight into the singular optimal problem. These ideas also lead to design of state-feedback
controllers to solve a singular LQR problem. We develop the theory behind the design of such

controllers in the next chapter.






Chapter 3

Almost every single-input LQR problem
admits a PD-feedback solution

3.1 Introduction

A regular LQR problem, as motivated in Chapter 2, can be solved using controllers designed
using maximal solution of the corresponding ARE. From a system-trajectory viewpoint, such
a feedback law u(t) = Fx(t) confines the set of trajectories of the system to the optimal ones.
However, it is known that for the singular LQR case such a confinement, using the feedback law
u(t) = Fx(r), might not be always possible [HS83]. As seen in Chapter 2, one of the reasons
is that R is non-invertible for the singular LQR case. Moreover, the ARE itself does not exist
either. However, apart from these arguments, there is a system-theoretic explanation for the
non-existence of such a static state-feedback in the singular LQR case. Note that for regular
LQR problems, it is known that, for any arbitrary initial condition x¢, the optimal trajectories of
the system are of the form x(r) = ¢+BF) xy and u(t) = Fx(¢) (see [Kir04, Chapter 5]). These
optimal state-trajectories are clearly restrictions to R, := [0, o) of functions from the space of
infinitely differentiable functions €~ (from R to R). However, for singular LQR problems it is
known that the optimal inputs, and hence the optimal state-trajectories, of the system are from
the space of impulsive-smooth distributions (see Definition 2.12, [HS83], [WKS86]). This can
easily be verified with the help of a simple example [HS83, Example 2.11].

Example 3.1. Consider the system %x =u and xo = 1. Let the performance index be J =

/ xz(t)dt. Note that J can be made arbitrarily small by a suitable choice of u, e.g., let
0

1
—— for 0<t<e
u(t) = £ 3.1
0 for t>e.

51
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On using this input, the state can be computed to be

t
I_E for 0<tr<e
0 for t>E€.

€

£\2 €
The perfomance index therefore becomes J = / (1 - E> dt = 3 Thus, using the input de-

fined in equation (3.1), J can be made arbitrarily small. However, no piecewise continuous or
measurable u(t) can make the performance index zero.
However, if we use u(t) = —9(t), then x(t) = 0 for t > 0. Thus, we have J = 0.

Example 3.1 shows that for singular LQR problems a solution may not exist if inputs
are from the space of infinitely differentiable functions. The inputs need to be from from the
space of impulsive-smooth distributions. A static state-feedback is incapable of producing such
impulsive-smooth distributions, and hence, incapable of solving the LQR problem for the sin-

gular case. This can also be verified with the help of Example 3.1.

Example 3.2. Let u(t) = —kx(t) for k € R. On application of this static state-feedback law on

the system in Example 3.1, the state becomes x(t) = e 8. Evaluation of the performance index

« 1
gives J = / e 2k dr = % = 0. Thus, no static feedback can make the performance index zero.
0

Interestingly, there are certain singular LQR problems that can be solved using static state-
feedback control law. The authors in [FN14, FN16, NF19] established that a singular LQR
problem is solvable using a static state-feedback control law if and only if such a problem
admits solutions to the constrained generalized continuous ARE (CGCARE). This is because in
such a case the optimal trajectories continue to be trajectories in €. However, in Chapter 4
we show that for almost all singular LQR problems, CGCARE is not solvable and hence such a
static state-feedback solution generically cannot solve a singular LQR problem.

In this chapter, we show that for (almost) every singular LQR problem, with the underlying
state-space system having a single-input, the impulsive-smooth optimal state-trajectories can be
obtained via a state-feedback that is a static linear function of not just the state but also its first
derivative. For obvious reasons we call this feedback a proportional plus derivative (PD) state-
feedback. Evidently, presence of the derivative feedback forces the closed-loop system to be a
singular descriptor system. We show that a suitable PD feedback always exists such that the
impulsive-smooth state-trajectories of the closed-loop singular descriptor system are precisely
the impulsive-smooth optimal state-trajectories of the singular LQR problem. We present this
as Theorem 3.12, in Section 3.4. This is the main result of this chapter.

Two important results, Theorem 2.30 and Theorem 3.9, play crucial roles in the deriva-
tion of Theorem 3.12. Both these results are based on properties of the Hamiltonian system
corresponding to the LQR problem. It is well-known that the Hamiltonian system, given by the
equation (2.11), arises on application of Pontryagin’s maximum principle (PMP) to the LQR
problem [IOW99]. It follows from PMP that, for the regular case, the optimal solutions of the
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LQR problem are nothing but suitably chosen trajectories of the Hamiltonian system [Kir04,
Section 5.2]. For the singular case, however, this Hamiltonian system becomes a singular de-
scriptor system, and PMP becomes applicable to only the smooth trajectories of this system. We
show in Theorem 3.9 that, not only the smooth trajectories of the Hamiltonian system, even the
impulsive-smooth ones, when suitably chosen, are optimal. We prove this using two results, first
aresult in [Sch83] that shows that the optimal value of the cost functional for any LQR problem
is induced by the maximal solution, among all the rank-minimizing solutions, of the LQR LMI
(2.3). Recall from Chapter 2 that we call such a solution the maximal rank-minimizing solution
of the LQR LMI. The second result is Theorem 2.30 that provides a method to compute the
maximal rank-minimizing solution of an LQR LMI in terms of the Hamiltonian pencil. The
only assumption that we make here is that the Hamiltonian matrix pair does not have any finite
eigenvalue on the imaginary axis. We show that this assumption can be guaranteed by ensuring
that the matrix of rational functions C(sl, —A)~'B, where Q =: CTC has no finite zero on the
imaginary axis (Lemma 3.17). This is true for almost all A, B,C matrices; the word “almost” in
the title is added hence.

3.2 Preliminaries

3.2.1 Half-line solution of a state-space equation

Recall that in line with the definition in [HS83], [WKS86], we defined the space of impulsive-

smooth distributions in Definition 2.12. Since we deal with distributions from €%, ., it is essen-

tial to define what is meant by the solution of a system X with state-space equation %x =Ax+Bu
and initial condition xy. In this chapter, we use the term solution in the distributional sense as

introduced in [HS83] [HSWOO0].

Definition 3.3. [HSWO00, Equation 3.7] Consider a system ¥ with a state-space dynamics %x =

Ax+ Bu, where A € R®™™ and B € R™*™. Then, col(x,u) € Q:Ii‘rg“ is called a trajectory in X,
corresponding to an initial condition xg, if col(x,u) satisfies the following equation: dy =

dt
Ax+ Bu+x(9.

For a detailed justification of Definition 3.3 refer to the discussion in [HS83, Section 3].

3.2.2 Admissible inputs

In the LQR Problem 2.1 it is of paramount importance that the inputs u of the system X be such
that the integral in equation (2.8) is well-defined. In this chapter we follow the same line of

reasoning as in [HS83] to ensure that equation (2.8) is well-defined. Note that since [ SQT Ii} =0,

there exists a full row-rank matrix [C D] € R™ (@) guch that [gﬂ [c D] = [ SQT }i] , where

rank ( [SQT ;]) = r. Define y(t) := Cx(t) + Du(t). In the sequel, the trajectories x(¢) and y(¢)
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that result from an initial condition xy and an input u(z) are denoted by x(¢;x0,u) and y(¢;xo,u),
respectively.
As motivated in Section 3.1, for singular LQR problems the optimal inputs u(z) are from

the space €% . Further, the class of impulsive-smooth distributions are known to be closed

imp®
under convolution, in particular under differentiation and integration [HSS3 Proposition 3.2].

we must have x(¢) € €} y(t) € € . Thus, in

Therefore, corresponding to u(t) € €% tmp = imp-

imp?
terms of Definition 2.12, we have y(z ) Yreg + Yinp. Note that the functional (2.8) in terms of
y() takes the following form J(xo,u) = [, |[y(¢)||*dz. For this integral to be well-defined, we

need y(t) to be from the space € (R, Rr) |r, and hence, we define admissible inputs as follows:

Definition 3.4. [HS83, Section 3] We call an input u(t) € €%, admissible if y(#;x0,u) € &5
is such that yinp = 0. The space of admissible inputs is represented by Us.

Using this notion of admissible inputs, we are now in a position to restate Problem 2.21

specifying explicitly the space from which the inputs u# need to belong.

Problem 3.5. (Single- input singular LQR problem) Consider a controllable system ¥ with
state-space dynamics 5 —x = Ax+ bu, where A € R**® and b € R®. Then, for every initial con-
dition x, find an input u € 2 that minimizes the functional

J(xo,u) := /0°° (xTQx) dt, where Q > 0. (3.2)

3.3 Characterization of optimal trajectories

As stated in Section 3.1, our primary objective in this chapter is to design a state-feedback
controller that solves a singular LQR problem. In this chapter we take the first step to attain
this objective by characterizing the optimal trajectories of a system corresponding to a singular
LQR problem.

Recall from equation (2.58) that on partitioning W (defined in Theorem 2.30) as W :=
[‘vlv,ﬂ , where Wi, W, € R®™*®f we must have

:[b Ab - AR—1p]. 3.3)

Now, define 7" := img Vi5 and # = img W;. Recall from Figure 2.3 in Chapter 2 that the state-
space of the system X can be decomposed as R* = ¥ & #. Thus, any initial condition x( of the
system X can be uniquely decomposed as xo = xos + Xo¢, Where xos € ¥/, and xos € #. In the
next two lemmas, we characterize those trajectories of X that are candidate optimal trajectories
corresponding to an initial condition first for xy € ¥ and then for xy € #. Later in Section 3.3.3
we show that these candidate optimal trajectories are indeed the optimal trajectories that we are

looking for.
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3.3.1 Characterization of the candidate optimal fast trajectories

In the next lemma, we characterize those trajectories of X that are candidate optimal trajectories
corresponding to initial condition xy € #'.

Candidate fast optimal trajectories of the system X

Lemma 3.6. Let xor be as given in the table below and define zgp, :=0, where k €

{0,1,...,ns—1}. Define Xtk, Zek €y and gy € Cinp as given in the table.

k Xk 20k Xk Ttk s
0 opb 010 0 | -0

1 | aAb 0 | -oubd 0 | -0 60
2 | A2 0 |- <b5<1> +Ab6> 0 | -as®

ng—1 | G, 1AM b | 0 | -0ty 1 S AN 2 G0 | 0 | o, 8@

ns—1 - ng—1 - - ng—1 = _ ng—1 -
Let Xoe 1= ;2 X0 Xe:= o Xeko Ze:=p o Zek and ilg:=y ;= isr. Then,
(1) col(Xg,Zs,ils) € XHam corresponding to initial condition col (xo¢,0p 1).

(2) col(X¢,iis) € X corresponding to initial condition xos.

Proof: (1): Using Lemma 2.36 it is easy to verify that A¥p = col(A¥b,0,) fork € {0,1,...,ns —
1}. Hence, col (xox,zox) € R?® from the table above can be rewritten as

col (ka,Z()k) =col ((XkAkb,OnJ) = OCkA\ki)\, fork € {1,2, ce., g — 1}.

Now corresponding to the initial condition akgkb of the Xy,m we compute the trajectories of
YHam- Define s(¢) to be the unit step function, i.e.,

I, fort >0
s(r) =
0, fort < 0.

Corresponding to the initial condition col (xor,zox) and input u(r) = — oy 8K), we therefore have

xXO)| A LA s _ A ~dE e
[Z(l)] =" A%boys(t) + ; e b< [0789) (T)) dr=e"A"boys(t) Ot (e bs(t)>
3.4)
We first prove that
dk - SN k—1 R o
- (eA’bs(z)) = M ADs(r) + Y Aps0. (3.5)

i=0
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We use the principle of mathematical induction to prove it.
Base case: (k= 1): Expanding using the chain rule of differentiation, we have

% (eX’Zs(t)) = exlggs(t) +b3.

Induction step: We assume that

k R N k—1 R o
d (eAfbs( )) = M ADs() + Y A8,

Ttk
dt i=0

We show that

ket 1 (k+1)—1

d o L

prEs <eAtbs(t)) eAtAkHbs 1)+ g Ak =1=ip5(0)
i=0

Now, using the chain rule of differentiation and applying the induction hypothesis, we have

L (Mbs(0)) = (Aot + 5 = L7 (MFbs(r) + b5

dtk+1

k—1 (k+1)—1
—eAfAk“bs +2Ak s £ psk) eA’A"“bs 1)+ Z Al =1=ip5(0)
i=0 i=0

This proves equation (3.5). Using equation (3.5) in equation (3.4), we have

[x(t)] _ A tboys(r) - a,% (¥Bs(0)

z(t)

— M ADs(1) oy — A ADs (1) ZAk 1=ips ) ZA" =p50). (3.6)

Using Statement (3) of Lemma 2.36, we can rewrite equation (3.6) as:

X(I) kfl/\ o k—1 Akiliib . Tr
0 =—) ARSI =" . 80 = || forke{1,2,....n:—1}. (3.7)
n,l Ltk

zt i—0 i—0

Thus, the trajectory col(Xgx,Zsk, isx) satisfies the equation jt[ |= —A [% ]+bu Next, we show

that the trajectory col(Xgy,Zsx, s ) satisfies ¢ [ka] =0.

o] ey (am)) - (e E). s

i=

From Lemma 2.36, ¢A‘D = 0 for ¢ € {0,1,2,...,n¢ — 1}. Therefore, the right-hand side of

Xeg Xeg

equation (3.8) is equal to 0, i.e., ¢ [ka} = 0. Thus, the trajectories [ka satisfies the output-

nulling equation (2.12) of Xy, for k € {1,2,...,ns — 1} in the distributional sense. To complete
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the proof we need to show that [28] satisfies equation (2.12), as well. We prove this next.

When k =0ie. [300] = oob and u(r) = — a8, from equation (3.4) we have

- . ro R ~ ~ _ X
[x(f) — oMb —/ Al=1p (—%5(0)(T)> dt = apeb — ope"'b = 02y 1 = [)fﬂ)] :
0

Z£0

Clearly, ¢ )Zfig} = 0. Therefore, col(Xzo,Zz0,0) € LHam. Thus, col(Xex,Zsk, lhek) € LHam COI-
responding to initial condition col (x,zox), where k € {0,1,...,n¢ — 1}. Since Xy, is a linear

system, by the principle of superposition, Statement (/) of the lemma directly follows.

(2): We present a table next which explicitly validates that the trajectories col(X¢,is;) char-
acterized in Lemma 3.6 satisfies the state-space dynamics of X in a distributional sense, i.e., in
the sense of Definition 3.3.

k X0 = Xok x(t) = Xg u(t) = gy %x Ax+bu

0 apb 0 —0pd 0 —apbd

1 oAb —aybé —oy 8 —a b8V — (bW + 0} ABS)

2 | A% —w (b6<'> +Ab6) — 8™ —w <b6<2> +Ab5<'>) —w (b6<2> +AbS() +A2h8)
ns—1 (xnfilAnfflb _anfflz?iazAnfiziibé(i) _anfilé(nffl) _aﬂfflz?iazAnfiliiba(i) _aﬂfflz?ialAnfiliibé(i)

Table 3.1: Table to show the validity of %x = Ax+ bu+ x(6 for different initial conditions.

From the table it is evident that the trajectories col(Xgy, sy ) satisfy %x = Ax+ bu+ xy0.
Thus, col(Xsx,iisx) € X corresponding to initial condition xg;. Since X is a linear system, by
principle of superposition Statement (2) directly follows. |

Note that using W; defined in equation (3.3), the candidate optimal state-trajectory X can
also be written as:

0 5 5 5@ ... -]
00 & &b ... ghe=3)| _ -
00 5 se—a | | X
o
Xe=-Wr|: . S : . (3.9)
00 0 O s
Oy, —
00 0 O --- & R
00 0 0

This form of ¥ will be of importance to us in the sequel.
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3.3.2 Characterization of the candidate optimal slow trajectories

Next we characterize the candidate optimal trajectories of ¥ when the initial condition xq is
from 7. For Lemma 3.7, it is important to note the following: since V, is full column-rank
by Theorem 2.32, there must exists F' € R'*™ guch that V34 = FVj, where Vi, is as defined in

equation (2.39). We use such a matrix F' in the next lemma.

Candidate slow optimal trajectories of the system X

Lemma 3.7. Let col(Via,Van,Van) be such that equation (2.39) is satisfied. Assume
the initial condition of the system to be xo = Vip, where B € R". Define zy := Vopp,
Fs :=Viael B, iis := FVipe' B, and Zg := Vope'! B, where F € RV® satisfies V3o = F V.
Then,

(1) col(Xs,Zs,lls) € Lgam corresponding to initial condition col (xg,2p).

(2) col(Xs,ils) € L corresponding to initial condition x.

\. J

~

Proof: (1): Define F := [F 0} e R Using F as the state-feedback in Zgam, i.e., u = F [1],

the output-nulling representation (2.12) of Xy, takes the following form

d |x X

~ ~ PN NN X X
| | =A| | thu=(@A+bF)|"| andT| | =0. (3.10)

< < < <

Therefore, the trajectories in Ly, corresponding to the initial condition (xg,zo) takes the fol-

lowing form:

X TRy, | X oy |V V) X
e el I R I R Rl iy s el (3.11)
z 20 Voa Vaa Zs
. V1A
From equation (2.39) we know that ¢ = 0. Therefore,
Vaa
X V
| =e| "M LB =o. (3.12)
s Vaa

Thus, from equation (3.11) and equation (3.12) it is evident that col(Xs,Zs,s) € THam-

(2) : From equation (2.11) it is evident that col(Xs,is) satisfy the state-space dynamics %x =
Ax+ bu. Thus, col(Xs,is) € X. |
Now we claim that the trajectories defined in Lemmas 3.7 and 3.6 are indeed the optimal tra-

jectories of X.

3.3.3 Optimal trajectories of the system

Recall that the DAEs in equation (2.11) are obtained on applying PMP in regular LQR problem:s.
Therefore, for regular LQR problems, the trajectories that satisfy the DAEs in equation (2.11)
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are the optimal trajectories (see [Kir04]). However, we cannot invoke PMP here to claim that
the trajectories characterized in Lemma 3.6 and Lemma 3.7 that satisfy the DAEs in equation
(2.11) are optimal. This is because the trajectories characterized in Lemma 3.6 are not bounded:
see [PBGM62, Chapter 1I] for more on inputs admissible for PMP. Hence, instead of invoking
PMP we use a result in [Sch83] to prove that the trajectories in Lemma 3.6 and Lemma 3.7
minimizes the functional (2.8). We first review the result in [Sch83] for the ease of exposition.

Proposition 3.8. [Sch83, Theorem 2] Consider the singular LOR Problem 3.5. Let the corre-
sponding LMI be as given in inequality (2.9). Let Kyax be the maximal rank-minimizing solution
of the LOR LMI. Then,

min / (xT Qx) dt = xg KnaxXo.
0

The next theorem shows that the candidate optimal trajectories characterized in Lemma
3.6 and Lemma 3.7 are the optimal ones for the LQR Problem 3.5.

Optimal trajectories of the system X

Theorem 3.9. Consider an initial condition of the system X to be xy = ViAB + W,
where Vipn and Wy are as defined in Theorem 2.30 and equation (3.3), respectively
with B € R and a € R™. Let X := Xs + X¢ and il := iis + iis, where col(Xs,iis) and

col(Xs,ls) are as defined in Lemma 3.6 and Lemma 3.7, respectively. Then,
i is an admissible input, i.e., it € Us.

Further, the following statements hold:

(1) col(%,a) €

(2) Jo (L Q%) dt = x{ KnaxXo.

(3) Jo (¥ Q%)dt

(4) Jo (7 0%) dt = x{ Knaxxo.

(5) col(X,i) is the optimal trajectory of the LOR Problem 3.5.

\. J

Proof: From Lemma 3.6 we rewrite the trajectories X¢y, ilg; and initial condition xgpg as X =
— oy Zf;ol AR1=1p80) e = — o 8 | and xogr = AFboy, respectively with k€ {1,2,...,ns — 1}.

Hence, we have
k—1 . . k—1 . ‘
Qf=—0> A1h5Wey =3 " 04 " psVey, fork e {1,2,--- g —1}.  (3.13)
i=0 i=0

From Lemma 2.36 we know that QA’h = 0 for £ € {0,1,--- ,n¢ —2}. Using this identity in
equation (3.13), we infer that Oxg; = O for k € {1,...,ns — 1}. Further, for initial condition
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xo = boy, we have Xzg = 0 from Lemma 3.6. Hence, OQx¢g = 0. Thus, we can infer that

nf—l nf—l
QF: =0 Xy= Y Ofgy=0forke{0,1,2,--- ,ne—1}. (3.14)
k=0 k=0

Now, define C € R**® such that Q =: CT C, where rank(Q) = r. Further, define y(t) := Cx(t).
Using the fact that Q%; = 0 = C%¢ = 0, we must have y(t;x,i) = C(Xs + %) = C(Vipe!'B +
%) = CVipe''B € €*(R,R%)|g, . Thus, by Definition 3.4, we have ii € %.
(1): Using Lemmas 3.7, 3.6, and linearity of £, it is evident that col(Xs + X, s + its) € L.
(2): Since Vap € R1*2s and V4 is full column-rank, there exists an F € R!*® such that V35 =
FVia. Thus, from equation (2.39), we have AVip + bVip = (A + bF)Vipx = ViAL. Therefore,
%s = Viale!" B = (A+bF)Vipe'" B. Hence, on using Kyab = 0, we get

d —_ —_ = —_ —_ -
E(ngmaxxs) = XsTKmaxxs +X£Kmaxxs
= (ViaTe"'B)" Knax(Vine ' B) + (Viae'B) Knax(ViaT'e'B)
= BT VI (A+bF)  KpaxVine ' B+ BTe" 'V Kuax(A+bF)Vipe' ‘B

= BT (VI AT KyaxVia + Vi KnaxAVia ) e B. (3.15)
-1
Note that K.z Via = [Vz A 0} [V] A Wl} Via = Vaa. Using this in equation (3.15), we have

VIT/\ (ATKmaX + KnaxA + Q)Via = VE\ATVZA + VzTAAVm + V1€\QV1A

_ [VZTA _VITA]A . (3.16)
Vaa
From equation (2.39), we have
~ |V ~ V ~ |V V ~
Al 4ovip= | M r=a | = [T T=bwsy (3.17)
Voa Voa Voa Voa

Using equation (3.17) in equation (3.16) combined with the facts that VE\VZA = Vzc\Vl A (see
Proposition 2.31) and b'Von =0, we have

VIY;\ (ATKmax + KpaxA + Q)VlA = [VZTA _VITA] I — =0

= VIY;\(ATKmax + KnaxA)Vip = —VITAQVU\. (3.18)

Using equation (3.18) in equation (3.15), we get
d ,_ _ T T e
= (ngmaxxs) =BT IVITAQVmenﬁ = —ngxs. (3.19)
Hence, cost due to input it5 and initial condition xog is
(o] oo d
/ (x;f Q)Es) dt = — / — (ngmafo) dt = xg KnaxXo —xoToKmaXxoo, where lim x(#) =: Xeo.
0 0

dt [—>o0
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Note that the integral above is well-defined since Xs = img (V1 ael’ ), where ¢ (I") CC_. Further,
since 6(I") C C_, lim;_yeo X =Xo =0. Thus, Statement 2 follows.

(3): Since Qxs = 0 from equation (3.14), the cost due to input ié¢ and initial condition xgs is

/w (¥ Q%) dt = 0.
0

(4): From Statement (/) of this theorem, we know that corresponding to initial condition xo we
have col(Xs + X¢,ils + ii¢) € X. Therefore, using Statement (2), (3) of the theorem and the fact
that Oxs = 0, we have

/0 ((xs+xf)TQ(xs+xf))dt:/0 (%L Qs + %L OF¢ + %L OFs + XF OFs )dt

= / ()ZgQis)dt = xg KnaxXo-
0

(5): From Statement (3) and (4) of Theorem 2.30, we know that K, is the maximal rank-
minimizing solution. Further, from Proposition 3.8 we know that the minimum value that can
be attained by fow (xT Ox)dt is xg Knaxxg. Hence, from Statement (4) of this theorem, we infer
that col (¥, ) are the minimizers of [;”(x” Qx)dt, i.e., col(x,i) is the optimal trajectory of the
LQR Problem 3.5. n
Thus, Theorem 3.9 establishes that col(¥s,ii¢) are the optimal trajectories of . Note that, on
using Table 3.1, the optimal input for the LQR problem in Example 3.1 can be computed to be
—3(t). This corroborates with our analysis in Example 3.1.

In the next section, we show that the system X can indeed be confined to the optimal

trajectories col(X, i) using a PD state-feedback control law of the form u = Fx + Fy %x.

3.4 PD state-feedback controller for singular LQR problems:

single-input case

In this section we present a method to design a PD state-feedback control law u = Fpx + Fy %x
that solves the singular LQR Problem 2.21. To this end we first define the feedback matrices Fy,
and Fy. Then we show that the application of the control law u = Fpx + Fd%x to the system X

confines its state-trajectories to the optimal ones X (characterized in Theorem 3.9).

Using the fact that X;, is nonsingular (Statement (/) of Theorem 2.30), we define the
matrices Iy, Fy € R'™ as follows:

Foi=|Van fo fi = fae] Xid (3.20)

Fai=[Om, 1 —fo o —fara Xid (3.21)
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where V3, is as defined in Theorem 2.30 and f; € R for i € {0,1,...,ns — 1}. The closed loop
system obtained on application of u = Fpx + Fd%x to X is as follows:

d
E. Ex = Acx, where (I, — bFy) =: Ec,(A+bF,) =: Ac. (3.22)

We use the symbol X¢1,seq to represent the closed loop system in equation (3.22). Note that

E X\ = (In—bFq)Xia = X1A — bFaXia

Vian b Ab --- Anf*lb]—b[ohns L —fo - —fas2

Eo=|ViA Oui Abtbfo - A% bt bfy o] Xy

&4

Clearly, E. € R™™ s a singular matrix and therefore, E. is the product of a singular matrix
E. and a nonsingular matrix X]’AI. Thus, E. is a singular matrix. This implies that the sys-
tem Xc10seq in equation (3.22) is a singular descriptor system. Recall from Proposition 2.8
that for the singular descriptor system Xcjoseq if det (sE. —A¢) # 0, then we get unique state-
trajectories in X¢10seq (given by equation (2.5)) corresponding to an initial condition. Unique-
ness in the state-trajectories of X¢1oseq cOrresponding to an initial condition is crucial in the
sequel to prove that the PD state-feedback control law, that we propose, confines the system to
its optimal state-trajectories only. Hence, in the next lemma we show the existence of F, and Fy
such that det (sE. —A¢) # 0.

Existence of F, and Fy such that the matrix pencil (sE. —Ac) is regular

Lemma 3.10. Let F, and Fy be as defined in equation (3.20) and equation (3.21), re-
spectively. Then, there exist fo,...,fn,—1 € R such that det (sE;—A.) #0, where E., Ac
are as defined in equation(3.22).

Proof: In order to prove this, we construct two matrices F, and Fy using equation (3.20) and
equation (3.21), respectively such that det (sE; — A ) # 0. We define fi= [fo fi 0 fae2| €

R!*(@e=1) Then using equation (3.21), we can write

L, 0 0
EXia=(L—bF)Xia=Xia |0 0 [ |. (3.23)
0 0 I,

From equation (3.20), we have FpAkb = fy fork € {0,...,n¢ — 1}. Therefore, we get
(A+bFy)A*b = A b+ bF,AYD = AMT b+ bfi,  fork€{0,1,...,ns —1}. (3.24)

Note that for k = ns — 1, we have (A + pr)Anf “lp=Arep 1) fas—1. Since X is invertible, us-
ing equation (3.3) we can infer that the columns of X;5 = [Vl A Wl} = [Vl A b oo oAl b]



3.4 PD state-feedback controller for singular LQR problems: single-input case 63

are independent. Therefore, there exists &, € R" and xy, K1, ..., Kn,—1 € R such that the vector
A" b can be uniquely written as

AP b = ViaK, + bko+Abk) + -+ A™ bK, 1. (3.25)

Defining k := col(kj, Ky,..., Ky, —1) and using equation (3.24), equation (3.25) with the fact
that (A4 bF,)ViA = ViAI" (From equation (2.39)), we have

I O K,
AXiAa=(A+bF)XiAa=Xia |0 [ fa1+K0|- (3.26)
0 Inf—l K

e 0 0
Define Z;:= [ 0 1 —f |. Note that det(Z;) = 1. Using equation (3.23) and equation (3.26),
001l
£

it can be verified by simple multiplication that

Z\ X[} (SEc —Ac) Xia = SZi X\ EXin — Z1X (4 AcXia

sh.—T| 00 . 0 _x, ]
0 00 -« 0 —Ky—fo1+fK
0 -1 s - 0 —K
= S , .62
0 00 - s —Knp 2
0 00 - —1 §— Kog 1

Since det (ZIXI_Al (sEc —Ac)Xia) = det (sEc — Ac), we have from equation (3.27),
det (SEC —AC) 7& 0 fnf,1 —fK’ 7é —Ko-

In particular, if we choose f: 0 and fy,—1 # —Kp, then the matrices F;, and Fy are such that
det(sE. —Ac) # 0. Thus, there exist at least two matrices F, and Fg such that det(sE. —Ac) #
0. This completes the proof of the lemma. |

Note that there are infinitely many choices of fand Sfas—1 such that f, 1 — fK # —Kp. Thus,
from Lemma 3.10 we can infer that there are uncountably many choices of F;, and Fy such that
det (sE; —Ac) # 0 for Lc10seq- Each of these choices leads to a closed loop system X¢joseq that
admits unique state-trajectories. Next we prove that these unique state trajectories are nothing

but the optimal state-trajectories X characterized in Theorem 3.9.
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Trajectories of the closed loop system X¢10seq

Theorem 3.11. Let Xc105eq be the system defined in equation (3.22), where Fy, and Fy are
as defined in equation (3.20) and equation (3.21), respectively, with det (sE. — A¢) # 0.
Consider an arbitrary initial condition of the system L¢1osea given as xo =: VipB + W a,
where B € R™, o € R™, and V5, W are as defined in Theorem 2.30, equation (3.3),
respectively. Let X be as defined in Theorem 3.9. Then, the unique trajectory in X¢iosed

corresponding to X is X.

Proof: First we transform the system X.j,seq to its canonical form. Recall Z; from the proof of
Lemma 3.10. Using the co-ordinate transform p := Xl_Alx on X¢10seq and then pre-multiplying

with Z1 X 1_/\1 gives

_ d _
Zi X[\ EcXin o = Z1X; N AcXiA P (3.28)
E t A

From equation (3.23) and equation (3.26) we have that

Ins 0 0 r OnS ni—1 Ky
Ervew =10 0 0 y Apey = 0 017nf—1 Y15 (329)
0 0 L One—11 Ing—1 K

where K, Kv,fare as defined in the proof of Lemma 3.10 and ¥ := ko + fn,—1 — fK. Note that
F, and Fy are chosen such that y # 0 to ensure det (SEc —A¢) # 0 (see Lemma 3.10). We use

this fact to define the matrix:

Ins _% Ons,nffl
Z:=10 _TK; Inf—l
1
0 ¥ 01 ne—1

Note that Z, is nonsingular. On pre-multiplication of Eyey; and Ayey in equation (3.28) with Z;
it can be verified that

I, 0 In,—1

Eciosed := ZoFEney = , where Y := (3.30)
0 Y 0 O
r o

Aclosed = ZZAnew = . (331)
0 I,

Therefore, pre-multiplying equation (3.28) with Z, gives
L, 0| d r o
p (3.32)

_p:
0 y|dt 0 I,
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Since ZzZleAl and Xj, are nonsingular, equation (3.32) is a canonical form of the system
Yc10sed- NOw we prove the theorem in two steps: first we assume the initial condition to be
x0 = V1B and then we consider xop = W .

Step 1: Let xg = VioB, where B € R™. Then, in the transformed co-ordinates the initial condi-
tion is XfAlxo :XfAlVlAﬁ :XfAl [Via W1 | [g} =col(f,0x,,1). Using the fact that the nilpotency
index of Y is n¢, from equation (2.5) the state-trajectories of X corresponding to initial condition

VIAB 1s:

I,

0 Ilf*l
x(t) :XlA !

By |:In O} X0 — Xia Z si-Dyi [0 Inf] Xlx
i=1

S
0 e

ne—1
—Vire" |, 0] g ~wi >8Iy o 1] Pl —viaep = ..
Ong 1 i1 On, 1
Step 2: Let xo = Wi = Zif:f)lAkbock, where & € R™ and o =: col(0p, 1, ...,0n,—1). Then,
in the transformed co-ordinates the initial condition of the system X15geq 1S X 1_/\1 xo=X 1_/\1 Wi =
col(Ons’l , ). Hence, from equation (2.5) the state-trajectories of ¥ due to initial condition W} o
isx(t) =—-W, Zf‘i?l 8=yiqa, which in matrix form is:

(0 5 s §@ ... §me-2)]
00 & &b ... ghe=3)| _ _
00 0 & .. gwad||®
(09]
x(t) =—-W :
00 0 0 s
One—1
0 0 O 0 B L _
0O 0 O o .- 0

Using equation (3.9), we therefore have x(7) = ¥.

It then follows from Step 1 and Step 2, and linearity of X 1,seq that corresponding to
an initial condition xo = Vjo8 + W), the trajectory of the system Xcjoseq iS Xs +Xr. From
Theorem 3.9 we know that X = X5 +X¢. Since Fy, and Fy are chosen such that det (sE. —A¢) #0,

corresponding to initial condition x(, X must be unique. |

Using Theorems 3.9 and 3.11 we present the main result next.

7

Trajectories of the closed loop system X.1,seq are the optimal ones

Theorem 3.12. Consider the singular LOR Problem 2.21. Assume F, € RY™® and
Fy € R 10 be as defined in equation (3.20) and equation (3.21), respectively with
det (s(kh — bFy)— (A +bF,)) #0. Let the closed loop system obtained on application of
the PD state-feedback law u = Fpx+ Fy %x to X be as defined in equation (3.22). Then, for
an arbitrary initial condition xq, the corresponding trajectory of the closed loop system

Y c1osed Minimizes the functional (2.8).
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Proof: From Theorem 3.11 it is clear that corresponding to an initial condition xq the unique
state-trajectory of the system X..1,seq 1S X. Further, from Theorem 3.9, we know that the integral
f;o (x" Qx)dt is well-defined and ¥ is the optimal state-trajectory of the LQR Problem 2.21.
Thus, the state-trajectories of X¢j1seq corresponding to any initial condition xy minimizes the
functional (2.8). n

Recall that Theorem 3.12 is not applicable to singular LQR problems that admit Hamiltonian
matrix pairs with imaginary axis eigenvalues (condition 6(E,H) N jR = 0 in Theorem 2.30).
This assumption is true for almost all singular LQR problems. Thus, using the fact that regular
LQR problems are solvable using static (P) state-feedback control laws, we can infer from
Theorem 3.12 that almost every single-input LQR problem can be solved using a PD state-
feedback control law.

Note that since X¢10seq 18 @ singular descriptor system, from Section 2.2.3 we know that
Yc10seqa admits a slow and a fast subspace. In what follows, we show that the slow and fast
subspaces of X1,seq are nothing but the subspaces img Vi and img Wy, respectively with Vi,
and W as defined in Theorem 2.30 and equation (3.3), respectively.

Pre- and post-multiplying E. and A in equation (3.22) with the nonsingular matrices
ZZZIXI_A1 and XA takes Xcjoseq to its canonical form as in equation (3.32). Therefore, recall
from Section 2.2.3 that the subspace spanned by the first ng columns of Xj 4, i.e., the subspace
img Vi is the slow subspace of X¢joseq- On the other hand, the subspace spanned by the last
ns columns of X4, i.e., img W is the fast subspace of X¢1,5e4. We formally present this in the

form of a corollary next.

Slow and fast subspaces of the closed-loop system that solves LQR Problem 3.5

Corollary 3.13. Consider the system X.10seq With the state-space equation of the form
given in equation (3.22), where Iy, and Fy are as defined in Theorem 3.12. Define V' :=
img Vip and W := img Wy with Vip and Wy as defined in Theorem 2.30. Then, V and W

are the slow subspace and fast subspace of the system Y..10seq, respectively.

Proof: This directly follows from the discussion before this corollary. |

Now let us apply Theorem 3.12 for the single-input regular LQR Problem 2.1 with the system
given by %x = Ax + bu and the objective function as defined in equation (2.1). For the regular
LQR problem, we can directly use Proposition 2.19. Hence, there exists (Via,Van, V3a) such
that

A 0 b Via Via
—0Q —AT —S| |Vaa| = |Vop | T, where o(T") C C_. (3.33)
st pT R| |Via 0

Thus, we have from equation (3.33)

STVIA+ b Vor +RV3p = 0= Vap = —R (BT Vop +STViA).
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Using the fact that X;5 = V) here, from Theorem 3.12 we get

B =VaaX(, =VaaVi) = =R (0 Vaop +8TVip) V!
=R BV V 4+ ST) = RN (D Knax +57).
Further, from equation (3.21), we have Fg = 0. Thus, the state-feedback law u = —R! (bTKmaX +

ST)x solves the regular LQR problem. This corroborates the well-known results on regular LQR

problem in the literature. Hence, Theorem 3.12 is indeed a generalization of the solution to the

0]
0,
1

regular LQR problem.

Example 3.14. Recall Example 2.20 from Section 2.2.6. For this example X|p = l

DO =
(=l e

and Vax = 0. Assigning fo = 0 and defining f1 =: f in equation (3.20), we have

-1

100 100
F=lo o f|| 110 =oos|-110]=[2r0
20 1 20 1

Similarly, from equation (3.21), we have

-1

1 00
Fd:[() 1 O} 1 10 Z[—l 1 O]
-2 0 1
Thus,
1 00 1 0 1
L—BFy= |1 0 0|,andA+BF,= |1+2f 0 1+f]|.
0 01 1 1 0

Note that det (s(I3 — BFy) — (A+BF,)) = —f(s+ 1). Thus, if we chose any f € R\ 0 then
det (s(I3 — BFy) — (A+ BF;)) #0. Hence, for any value of f € R\ 0, we have a PD-controller
that solves the singular LOR problem. Note that there are uncountable numbers of PD-controllers
that solve this singular optimal control problem.
1 0 0

For initial condition xo = { %} B+ Ll)] oo+ {(1)] Q, the optimal input for this problem
isu* = —2¢'f —otpd — o1 .
We revisit Example 1.2 introduced in Chapter 1 to design a controller for the damped spring-
mass system such that its trajectories are confined to the ones that minimize the total energy of

the system.

Example 3.15. Consider the damped spring-mass system in Example 1.2 with normalized

spring constant k, damping constant ¢ and mass m. Then, the dynamics of the system is
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d |p1 0 1| |m 0 /_[666\_ u(t)
- = + u
dt

Figure 3.1: A damped spring-mass system with
m=1kg,c=1Ns/m, and k =1 N/m.

The objective is to find an input u, for all initial conditions xo € R?, that minimizes the
functional
T

1 [~ 10
J(xo,u)zi/ pi rl
0 p2| |0 1| |p2

On computing det(sE — H), we have ng = 1 and ng = 1. The set of eigenvalues of the corre-
sponding Hamiltonian system is A = {1,—1} and hence the lambda-set is {—1}. Correspond-
ing to this lambda-set an eigenvector is Vop = col(2,—2,1,0,2). Therefore, Vi = col(2,—2),
Voa = c01(1,0), and V35 = 2. Using Theorem 2.30, we get

_ 5 0 -
Xia 21 |05 0
XA = = |——| = Kpax = XZAX1A =
Xon 1 0 0 0

- . L 0)2
Therefore, minimum energy the damped spring mass system can attain is xg Knaxxo = 4(0) ,

where q(0) is the initial position of the damped spring-mass system. We design a controller
using Theorem 3.12 to confine the trajectories of the system in Figure 3.1 to its optimal trajec-

tories.
-1

Fo=[van g% =[2 4] =[1+r 4]

-2
Fa=lo 1]x3 =1 1]
The closed-loop system obtained on application of the feedback u(t) = Fpx(t) + Fy %x(t) is

1 0| d |q 0 1| |g

—1 o) dtlq] [f f] |4
On chosing any f € R\ {0}, we have an autonomous closed loop system that confines the
trajectories of the damped spring-mass system to the ones that minimize the total energy of the

system.
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From Theorem 3.12 it is evident that LQR problems can be solved using PD state-feedback
controllers. However, Theorem 3.12 is applicable only for those LQR problems that admit
Hamiltonian systems Xpj,m with o(E,H)N jR = 0 and det(sE — H) # 0 (see Theorem 2.30 for
these assumptions). Hence, a relevant question here is: how do we solve the singular LQR Prob-
lem 3.5 when the aforementioned assumptions are not met? We discuss about the implications
of these assumptions for single-input LQR problems next.

(i) det(sE —H) =0 : A singular Hamiltonian matrix pencil implies that the corresponding

Hamiltonian system Xy, 1S non-autonomous. However, we show next that for a single-input

system with Q # 0, the Hamiltonian system is always autonomous.

A single-input singular LQR problem admits an autonomous Hamiltonian system

Lemma 3.16. Consider the singular LOR Problem 3.5 with the corresponding Hamil-
tonian system Yyam as defined in equation (2.11) with Q # 0. Then, the Hamiltonian

system Yyam IS autonomous.

Proof: To the contrary, assume the system Xy, to be non-autonomous. Note that the transfer
function of the Hamiltonian system Xy, is given by the rational function H(s) := ¢(shy —
A\)*IZ, where A\, Z, ¢ are as defined in equation (2.11). From Proposition 2.17 it is evident that
Y Ham 18 non-autonomous if and only if H(s) = 0. For H(s) to be identically zero, all the Markov
parameters of H(s) must be zero, i.e., cA’b = 0 for all £ € NU{0}.

We first claim that if €A’ = 0 for all £ € NU{0}, then QAFb = 0 for all k € NU{0}. We prove
this using induction and the fact that Q > 0.
Base case: (k = 0) For ¢ = 1, we know that

. A o0 ||b
EAb:O;»[o bT} —bTOb=0= Ob=0.
-0 —-AT| |0

Assume QAib =0 for 0 < i< k—1. We prove that QAkb =0.

2k—1
gg(zkmg:[o bT] A 0 A 0 A0 b
_Q —AT _Q —AT _Q —AT 0
2k—1
~[-ony —any] | 2 Ab
-0 -AT —Qb
2k—3
—[0 (Ab)T} A 0 A 0 A 0 | |Ab
—Q -AT| |- -AT -0 AT ]o
2k—3
A 0 A%b ,
= [0 (Azb)T} . (Using QAb = 0) (3.34)
—Q —-AT 0
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Proceeding in a similar way and using the assumption that QA'b =0 for all 0 <i < k— 1, we
infer from equation (3.34) that

A 0 (—1)k(A*D)

cAPp= o (~1)k(akp)" ] — _(A*D)T Q(AD) = 0

-0 -AT 0
= 0A*b =0.
Thus, we can write Q [b Ab - An—lb} = (0. However, for a single-input controllable sys-
tem [b Ab - An—lb} is a nonsingular matrix. Therefore, we must have Q = 0. This is a

contradiction and hence the transfer function of Y,y 1S a non-zero rational function. Thus,
YHam 1S an autonomous system. [ |
Note that for a regular LQR problem, X, is known to be autonomous. Thus, all LQR prob-
lems with the underlying system being single-input admit autonomous Hamiltonian system.

Interestingly, this is not the case for multi-input systems: see Example 4.12 and Example 4.13.

(i) o(E,H)NjR # 0 : This is the class of LQR problems that admit Hamiltonian systems

with eigenvalues on the imaginary axis. Since the unmixing condition in Definition 2.18 will

be violated in such a case, we cannot partition the eigenvalues of (E, H) into Lambda-set. How-
ever, taking a cue from [FMX02], we can relax the condition of unmixing for the eigenvalues
of (E,H) on the imaginary axis. Such a relaxation would mean that all the Lambda-sets of
det(sE — H) would contain the eigenvalues of (E,H) on jR. We might still be able to com-
pute the maximal solution of the corresponding LQR LMI using Theorem 2.30. However, the
closed-loop system X¢1,seq Obtained would always admit eigenvalues on the imaginary axis.
This implies that the states of the closed loop system would be periodic in nature and hence,
would not converge to zero. In such a case the functional in equation (3.2) won’t converge.
Therefore, for infinite-horizon LQR problems it is a common practice to implicitly assume
o(E,H)N jR = 0 in order to guarantee solution to the problem at hand.

Interestingly, for the LQR Problem 3.5 with (Q,A) observable, the assumption 6(E,H) N jR =
(0 is equivalent to the fact the system X does not admit any transmission zeros on the jR. We

establish this in the next lemma.

o(E,H)N jR = 0 if and only if the system X has no transmission zeros on jR

Lemma 3.17. Consider the singular LOR Problem 3.5 with Hamiltonian matrix pair
(E,H) as defined in equation (2.11). Define Q =: CTC and let y(t) := Cx(t), where C €
R¥*™ with rank(Q) = r. Let the system ¥ be (A, B) controllable and (C,A) observable.
Define G(s) := C(sI, — A)~'B. Then,

jo € o(E,H) if and only if j® is a transmission zero of G(s).

. J

Proof: Since the system is (A, B) is controllable and (C,A) is observable, without loss of gener-

ality, we can assume a right co-prime factorization of G(s) to be given by G(s) =: N(s)D(s)~'.
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Since G(s) is a column-vector of rational functions, we must have D(s) to be a polynomial (de-
noted by d(s)), and N(s) to be an m x 1 vector of polynomials. Note that, with this description

N
of G(s) = %, the set of transmission zeros of G(s) is given by the zeros of the polynomial

vector N(s): see [SF77] for the link between zeros and transmission zeros of a system.

From Statement (/) of Lemma 2.29, we know that
det(sE —H) =N(—s)TN(s). (3.35)

Note that jo is a zero of N(s) if and only if j is a zero of N(—s)” N(s). Using this along with
the fact that zeros of N(s) are the transmission zeros of G(s), we infer from equation (3.35):

jo € 6(E,H) if and only j is a transmission zero of G(s). [

Thus the assumption that 6(E,H) N jR = 0 can be guaranteed by ensuring that the matrix of
rational functions C(sI, —A)~!B has not finite zero on the imaginary axis. This is true for
almost all A,B,C matrices; the word “almost” in the title is added hence.

3.5 Summary

In this chapter, using the subspaces involved in the computation of the maximal rank-minimizing
solution Ky, of an LQR LMI, we characterized the optimal trajectories of a system correspond-
ing to a singular LQR problem. We showed that if the initial condition of the system are written
in a suitable basis (columns of V|5 and W; from Theorem 2.30) then the optimal trajectory shows
a nice structure (Lemmas 3.7 and 3.6). Taking a clue from this structure we design controllers
for the system that confines the trajectories of the system to its optimal trajectories. We show
that such controllers need to be PD-controllers (Theorem 3.12). Further, we explicitly charac-
terize the slow and fast subspaces of the singular descriptor system obtained on application of
the proposed PD-control law (Theorem 3.13).

Interestingly, it has been shown in [FN14] and [FN16] that, contrary to the notion that
singular LQR problems cannot be solved using static state-feedback, singular LQR problems
can indeed be solved using static state-feedback law provided such problems admit solutions
to a special form of the ARE called the constrained generalized continuous ARE (CGCARE).
Hence, a natural question is: What is the link between CGCARE and the theory that we have
developed in this chapter? We explore this link in the next chapter.






Chapter 4

Constrained generalized continuous ARE
(CGCARE)

4.1 Introduction

As motivated in Section 3.4 of Chapter 3 a singular LQR problem is known to admit optimal
trajectories from the space of impulsive-smooth distributions. Hence, singular LQR problems
might not be solvable using static state-feedback. However, in [FN14] and [FN16] it has been
established that the singular LQR Problem 2.1 can be solved using static state-feedback if and
only if the problem admits solution to an equation of the following form:

ATK+KA+Q— (KB+S)RT(BTK+S5T)=0
ker R C ker (S+KB).

(4.1)

The condition ker R C ker (S + KB) in equation (4.1) pertains to the algebraic relations that
the solutions of an LQR LMI, corresponding to a singular LQR problem, has to satisfy. Due
to the presence of an ARE and a set of constrained (algebraic) equations in equation (4.1),
such an equation is known in the literature as the constrained generalized continuous ARE
(CGCARE). Since solvability of CGCARE guarantees solution of a singular LQR problem using
static state-feedback, for the case when a singular LQR problem admits a CGCARE solution the
optimal trajectories are from the space of infinitely differentiable functions. A natural question,
therefore, is: when does a CGCARE admit a solution? In this chapter, we formulate necessary
and sufficient conditions for existence of a solution to the CGCARE. This is the first main result
of this chapter (Theorem 4.8). A direct corollary of this result reveals that a CGCARE admits
a solution only if the determinant of the corresponding Hamiltonian pencil is identically zero.
Another consequence of the first main result of this chapter is that, for a singular LQR problem,
in order for the corresponding CGCARE to have solutions, it is necessary and sufficient that the
Hamiltonian system is non-autonomous with input cardinality precisely equal to the dimension
of nullspace of input cost matrix R.

Having formulated the necessary and sufficient conditions for CGCARE solvability, the

73
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next relevant question is: how often are these conditions satisfied? To this end, in Section
4.4, we first show that the determinant of a Hamiltonian pencil is generically nonzero. This
is the second main result of this chapter (Theorem 4.16). Note that, it is tempting here to
argue that the determinant of a matrix pencil being nonzero is a generic property because it
evaluates to zero over a proper algebraic variety. However, since we are dealing with singular
LQR problems, and since an infinite-horizon LQR problem is generically not singular, loosely
speaking, we need to prove genericity of the determinant of a matrix pencil being nonzero
over a curved hypersurface in the Euclidean space. This makes the problem challenging and
non-trivial. In order to overcome this challenge, we use the notion of genericity based on
perturbation (see Definition 4.15). We elaborate on this in Section 4.4. Finally, using the
second main result (Theorem 4.16), we infer that CGCAREs corresponding to singular infinite-
horizon LQR problems are generically unsolvable. This is the third main result of this chapter
(Theorem 4.22). This result implies that almost all singular LQR problems cannot be solved
using static state-feedback. Hence, singular LQR problems need to be solved using PD state-
feedback controllers as described in Chapter 3. Note that all the results in this chapter are
for multi-input systems and hence we revisit the preliminaries for Hamiltonian systems in the
next section. Although most of the results in the next section (Section 4.2) are known in the
literature, we present these results as lemmas and reprove them for the sake of completeness
and ease of exposition.

4.2 Hamiltonian system for multi-input systems

Recall from Section 2.2.6 that the matrix pair (E,H) is called the Hamiltonian matrix pair
(see equation (2.7)). Similar to equation (2.11), the Hamiltonian system corresponding to the

Hamiltonian matrix pair (E,H) in equation (2.7) is given by the following equation:

I, 0 0 X A 0 Bl [x
0 L oo |ol:=]-0 a7 -s||: (42)
0 0 Opn u st BT R| |u

£ "

- —A +Bu, 0=C + Ru, (4.3)
dt |z z z
—~ 0 ~ B ~ .
where A := , B:= and C := [ST BT] . We represent the system in equa-
—-Q AT —S

tion (4.3) by Xygam. In order to present the main results of this chapter we first need to show

that the singular LQR Problem 2.1 can be transformed to a convenient form without loss of
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generality. Hence, in the next lemma, we show how Problem 2.1 can be transformed to such a
convenient form using a change of basis on the input space of the system. Note that for a given
singular LQR Problem 2.1, since R is symmetric, there exists a orthogonal matrix U € R™*™
such that UTRU = [8 I%] , where R = RT € R*™* and R is nonsingular. We use such orthogonal
matrices to define a transformation on the input-space of the system X defined in Problem 2.1.

This leads to a transformed form of the LQR Problem 2.1 which we use in the sequel.

A method to transform the singular LQR Problem 2.1 to a convenient form

Lemma 4.1. Consider the singular LOR Problem 2.1 where rank(R) =:r <m. Let U €
R™™ be an orthogonal matrix such that UT RU = diag(O,I/{’\), where R € R™* and R > 0.
Define BU =: [Bl Bz] and SU =: [Sl SZ], where By,S; € R™ (%) and By, S, € R***,
Then, the following statements hold:

m |2 2 z0a 70

ST R Q- SRS >o0.
(2) u* is a solution to the singular LOR Problem 2.1 if and only if UTu* := col(ul,u})
minimizes
T
X 0O 0 S| |x

J(xo,u) = / wl 10 0 of |u]a. 4.4)
0

up Sg 0 R up

(3) K=KT € R*® js a solution of the CGCARE (4.1) if and only if K is a solution of the

following equations

ATK+KA+Q—(KBy+5,)R™" (BYK+5Y)=0, and KB, = 0. (4.5)
g Q 815
Proof: (1): Define L := [In 0} € R@tm)>(@+m) ¢ is evident that LT[QT }L: S 00|,
0v SR sT o R
2

Since L is invertible and symmetric, by Sylvester’s law of inertia, it follows that

0 0 S1 S
. >0 ifandonlyif |ST 0 0] >0. (4.6)
ST R N

ST 0 R

Since R > 0, taking Schur complement with respect to R it follows that

0 S1 % S T
_ . |0—SR7IST s, S1=0, and
ST 0 0] >0 ifand only if >0« ~ (4.7)
. st 0 Q—SR71SY >o0.

s¥ 0 R



76 Chapter 4. Constrained generalized continuous ARE (CGCARE)

Thus, from equation (4.6) and equation (4.7), Statement (/) follows.
(2): Clearly, for all col(x(t),u(t)) that satisfies the state-space system dynamics %x = Ax+Bu,

T T Q 0 $

< x O S| |x | x X
/ t:/ 0O 0 O dt.
0 |u ST R| |u 0 (UTu Ulu

sT 0 R

Thus, u* is a solution to the singular LQR Problem 2.1 if and only if U7 4* is a solution to the
singular LQR Problem 4.4.
(3): Since K is a solution to the CGCARE (4.1), we have

ATK+KA+Q— (KB+S)R'(BTK+5T) =0
T 0 0 T (pT T
& ATK+KA+Q—(KB+S)U |~ |U"(B"K+S")=0
0 R
& ATK+KA+Q—(KBy+8)R (BIK +8%) =o0.

Further, we also have

ker R C ker (S+ KB) < ker (UTRU) C ker (U (S+KB)U)

0 0
< ker | Sker |KB;, KB+ S,| © KB =0.
0 R

This completes the proof of the lemma. ]

Hence the singular infinite-horizon LQR Problem 2.1 can be rewritten in terms of the new input
i as follows:

u
Problem 4.2. Consider a system with state-space dynamics %x =Ax+ [B 1 Bz} , where
u

AceR™® By € R2X (@—1) By € R®*T. Then, for every initial condition x, find an input ii :=

col(uy,up) that minimizes the functional

T
X 0 0 S| |x 0 0 95

J(xo,ﬁ)::/ u 0 0 0] |ul|dt, where |0 0 0| >0,ReR*™*, andR>0. (4.8)
0

w| [T 0 R| |w sT 0 R

Clearly, the CGCARE corresponding to the transformed LQR Problem 4.2 is given by
equation (4.5). Further, the Hamiltonian system (4.2) corresponding to the transformed LQR
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Problem 4.2 is:
A 0 o] [x (A 0 B, B [x
0 I 0 0| d|z —0 -AT o —-sT| |z
el C 2 (4.9)
0 0 Oprnr O |9 |u o B 0 0| |uw
0 0 0 Orr| |w2] [ST BY 0 R | |u]
i i

Since R is nonsingular in equation (4.9), we can eliminate u, from the equation: this gives the
following system of differential-algebraic equations (DAEs) equivalent to equation (4.9):

L O 0 X A —M B |«x
0 L 0 % z|=1-0 -AT o] |z]|. (4.10)
0 0 Oprnr u 0 B 0f|uw

where A := A — B,R~'S}, M := BoR'BY and Q := Q0 — $,R™'SY. We call the matrix pair
(Ey,Hy), the reduced Hamiltonian pencil and the system governed by the DAEs in equa-
tion (4.10) the reduced Hamiltonian system. The output-nulling representation of the reduced

Hamiltonian system (4.10) is therefore given by the following equations:

d |x X X
— =Ar + Brup and 0 = C; , “4.11)
dt |, z z
A —M B
where A, := eR™x2n B .— € R2x@m-1) and C, := [0 BT] € Rm-x)x2n_
—Q AT 0 :

In what follows, we establish a relation among the Hamiltonian matrix pair (E,H) cor-
responding to LQR Problem 2.1 (equation (4.2)), the Hamiltonian matrix pair (E ,ﬁ ) corre-
sponding to the transformed LQR Problem 4.2 (equation (4.9)) and the matrix pair (Ey,Hy)

corresponding to the reduced Hamiltonian system in equation 4.10.

Relation between the characteristic polynomials of (E,H), (E.H), and (E;,Hy)

Lemma 4.3. Let the matrix pairs (E,H), (E,H), and (E;,H) be as defined in equations
(4.2), (4.9), and (4.10), respectively, with the transformation from (E,H) to (E ,ﬁ ) being

done through an orthogonal matrix U € R™™ as in Lemma 4.1. Then,

det(sE —H) = det(sE —H) = (—1)"det(R) x det(sE; — Hy). (4.12)

Proof: Recall from Lemma 4.1 that the orthogonal matrix U € R™™ is such that UTRU =
diag (Om_r,m_r,k\), BU = [Bl Bz]» and SU = [()n,m,r Sz]- Define V := diag(ly,[r,U) €
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R(2otm)x(20+m) ¢ j5 eagy to verify that

[ A 0 B B
L 0 0 A 0 B||L 0O
, -0 AT 0 -5, .
VIHV=10 I, 0| |-Q -AT -S| |0 L 0= o BT 0 0 -
B
o 0 UT||sT BT R||0 0 U ! _
st Bl 0 R
(4.13)
L O Of||lL 0o o0 || o O L 0 0
VIEV=10 I, o||lo L o ||o L ol=|0 1, O|=E (4.14)
0 0 UT| |0 O Ouu| |0 O U 0 0 Oup

)

Since V is orthogonal, det(V) = +1. Therefore, using equation (4.13) and equation (4.14) to
compute det(sE — H), we have

det(sE —H)=det(sVEVT —VHVT)=det(V)det(sE — H)det(V)=det(sE — H). (4.15)

Next, define
A 0 0 0] (I, 0 0 —BR!]
0 I 0 0 0 I, O SHR™!
Z = ,and Z, :=
0 0 Iy O 0 0 I 0
R'S} —R'BY 0 I 0 0 0 L

Clearly, det(Z;) = det(Z;) = 1. Further, Z,EZ; = diag(Ey,0rr) and 7Z,HZ, = diag(H;,R).
Upon defining E :=NEM, and H := NHM, we get

det(sE —H) = det(sE —H) = (—1)"det(R) x det(sE; — Hy). (4.16)

Equation (4.15) and equation (4.16) together gives equation (4.12). [ |
Another result that would be required for the main theorem of this section is the relation between
transfer function G(s) of a system and the corresponding Hamiltonian pencil (E,H). This is a

generalization of Lemma 2.29 to the multi-input case.
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Relation between Popov’s function G(—s)” G(s) and o (E,H)

Lemma 4.4. Consider the singular LOR Problem 2.1. Assume [ SQT Iﬂ =: [

where C € RP*®, D € R™™ and [C D] is full row-rank. Define G(s) : C( I, —

A)"'B+D. Let G(s) % where d(s) := det(sl, —A) and N(s) € R[s]P*™. Define

rootnum (G(—s)"G(s)) := roots (det [N(—s)"N(s)]). Let the corresponding Hamil-
tonian pencil pair (E ,H) be as given in equation (4.2). Then, the following statements
hold:

(1) G(—s)TG(s) = C(shn —A)'B+R.

(2) rootnum (G(—s)"G(s)) = o(E,H).

Further, if 6(E,H) N jR = 0, then det(sE — H) admits a Lambda-set.

Proof: (1): Note that G(—s)T = —BT (sI, + AT)~1CT . Using this fact we have

—1
sl, — A 0 B
BT]

Cshn—A) 1B = [0
0 sl +AT 0
-1
:[0 T} (sl —A) 0 B
— (sl +AT)"ICTC(sly —A)~! (sl +AT)71| |0

= Bl (sl, +AT) It C(sl, — A)7'B = G(—s)T G(5).

(2): Note that we can write det(sE — H) as follows:

det(sE —H) = det N =det(shy, —A) X det (—R —C(shy —A) B>
¢ -R
= det(shy —A) x (—1)"det (G(—s)TG(s))
det (R x det(shy —A) + Cadj(shy —X)B\)

det(shy —A)

-~

= (—1)" x det(shy —A) X

— (—1)" x det (R % det(shy —A) + Cadj (sha —2)1?) . 4.17)

From Statement (/) of this lemma, we have

Cadj(sha~A)B)B Riast(sh—A)+Cadilsln—A)B
det(sly —A) R det(shy —A)
_ Rxdet(shy —f/l\) +Cadj (shhn —K)E
d(—s)d(s)

G(—s5)TG(s) = (

(4.18)
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Since G(s) = %, we must have G(—s)T G(s) = %. Therefore, from equation (4.18)

we have
N(—$)"N(s) =R x det(shy —A) +Cadj(shy, —A)B. (4.19)
Using equation (4.19) in equation (4.17), we have
det(sE —H) = (—1)" x det [N(—s)"N(s)] = o(E,H) = rootnum (G(—s)" G(s)). (4.20)

This completes the proof of Statement (2) of the lemma.

Note thatif 2 € roots (det [N(—s)"N(s)]), then —A € roots (det [N(—s)"N(s)]). Fur-
ther, since det [N(—s)"N(s)] € R[s], if A € roots (det [N(—s)"N(s)]), then we must have
A € roots (det [N(—s)TN(s)]). Thus, the roots of det [N(—s)"N(s)] are symmetric about
the real and imaginary-axis of the C-plane. Therefore, det [N (—s)TN (s)] is a even-degree
polynomial. From Statement (2) we know that 6(E,H) = roots (det [N(—s)"N(s)]). There-
fore, det(sE — H) is a even-degree polynomial as well. Let degdet(sE — H) =: 2ng. Since
6(E,H)N jR =0= roots (det [N(—s)"N(s)]) N jR = 0, we must have ng roots of det(sE —
H) in C_ and the rest ng in C,. By the Definition of Lambda-sets in Definition 2.18, the col-
lection of the roots of det(sE — H) in C_ is a Lambda-set of det(sE — H). |

Now that we have proved some of the auxiliary results required in this chapter, in the next
section we answer the question: When is the CGCARE solvable? Recall that the LQR LMI
corresponding to LQR Problem 2.1 is given by:

ATK + KA KB+S
k)= |V ETEKATC KBS 21
BTK + 8T R

An important result related to the rank of the LQR LMI (4.21), proposed in [Sch83], is crucially
required to formulate conditions on solvability of CGCARE in the next section. We present this

result as a proposition next for ease of reference.

Proposition 4.5. [Sch83, Theorem 1] Consider the LOR LMI (4.21) and the transfer function
G(s) as defined in Lemma 4.4. The minimal rank of £ (K), where K varies over the set of
symmetric matrices satisfying £ (K) > 0, is equal to nrank (G(s)).

Another result in [Sch83] related to the normal rank of a matrix with rational functions as
element is required in this chapter and we present it next (see [Sch83, Lemma 2] for a proof).

Before that we define normal rank of a matrix with rational functions.

Definition 4.6. [Kai80, Section 6.3] The normal rank of a rational polynomial matrix G(s) €
R(s)™*P, represented by nrank(G(s)), is defined as

nrank(G(s)) : = max {rank(G(A))|A € C and G(s) is analytic at A}
=max {rank(G(A))|A € jR and G(s) is analytic at L'} .

Proposition 4.7. [Sch83, Lemma 2] Consider W (s) € R(s)P*P. Then,

nrank (W (s)) = nrank (W (—s)"W(s)).
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4.3 Conditions for solvability of CGCARE

In this section we answer the first question we raised in Section 4.1: when is a CGCARE
solvable? The next theorem, the first main result of this chapter, provides a set of necessary and
sufficient conditions for the solvability of the CGCARE (4.5).

Necessary and sufficient conditions for the solvability of CGCARE

Theorem 4.8. Consider the singular LOR Problem 2.1 and the transformed LOR Prob-
lem 4.2. Let the Hamiltonian pencil pair (E,H) be as defined in equation (4.2), and
the corresponding reduced Hamiltonian system be as given in equation (4.10). Assume

[5% Ii] = [gﬂ [C D], where C € RP*®, D € R™*", and [C D} is full row-rank. Define

G(s):=C(sl, —A)"'B+Dand Q := Q — S2§*1S2T. Then, the following statements are
equivalent:

(1) CGCARE (4.1) admits a solution.

(2) CGCARE (4.5) admits a solution.

(3) nrank(G(s)) = rank(D).

(4) nrank(sE — H) = 2n+ rank(R).

(5) Ce(shy —Az)"'By =0.

(6) CLALB, =0, forall ¢ €N.

(7) OAkB, =0, forallk € N.

Proof: (1) < (2): This follows from Statement (3) of Lemma 4.1.
(2) = (3): The LQR LMI corresponding to the transformed LQR Problem 4.2 takes the
following form:

ATK+KA+Q KB, KBy+S$
Lrran(K) == BTk 0 0 > 0. (4.22)

~

BIK + ST 0 R

Hence the underlying LMIs corresponding to the CGCARESs (4.1) and (4.5) are given by the
inequalities (4.21) and (4.22), respectively. Define Z; := diag(l,,U) € R@Hm)x(atm)  where
UTRU = diag(Om,r./m,r,ﬁ). Then, pre- and post-multiplying % (K) with ZI' and Z, respec-
tively gives

I, 0| |ATK4+KA+Q KB+S| |I, 0
72 2(K)Z) = = Ziran(K) (4.23)
o Ut BTK + 58T R 0 U
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Since Z; is nonsingular and ZI #(K)Z, is symmetric, by Sylvester’s law of inertia we have
from equation (4.23)

rank(-Z(K)) = rank(-Ziran(K)). (4.24)
I 0 0
Further, define Z; := 0 In—x 0| Then, we have

—R'BIKk+SY) 0 I

#(K) KBy 0
ZzTgtran(K)ZQ = B{K 0 of = Zred(K)> (425)
0 0 R

where Z(K) := ATK + KA+ Q — (KBy + S2)R ' (BYK + S%). Since Z, is nonsingular and
Zg ZLiran(K)Z, is symmetric, from equation (4.24) and equation (4.25), using Sylvester’s law

of inertia, we have
rank(Z(K)) = rank(Ziran(K)) = rank(Zreq(K)). (4.26)

Further, note that for any K = K T e R2%n from equation (4.25) we infer that

~

rank(Zrea(K)) > rank(R) 4.27)

Let K, be a solution to the CGCARE (4.1), i.e. Z(K,) =0 and K,B; = 0. Then, by equation

(4.25), Zrea(K) evaluated at K = K, gives rank (Zreqa(K,)) = rank(R). Using this fact along

with equation (4.25), we have

~

rank (Zred(K,)) = rank(R) = rank (D) = rank(.Z(K,)). (4.28)

Thus, from equation (4.27) and equation (4.28) it is evident that the minimum rank of .2 (K)
among all symmetric matrices K that satisfies .Z(K) > 0 is achieved at the solutions of its corre-
sponding CGCARE (4.1). Hence, using Proposition 4.5 we have rank (. (K,)) =nrank (G(s)).
Using this fact in equation (4.28) we have rank (.Z (K, )) = rank(D) = nrank (G(s)).

(3) = (2): Since nrank (G(s)) = rank(D) = rank(R), from Proposition 4.5 it is clear that the
minimum rank that can be attained by .2 (K) is rank(R). From equation (4.25) and equation
(4.26) it is clear that rank(.Z(K)) = rank(-Zreqa(K)) = rank(R) only if there exists a K such
that Z(K) = ATK + KA+ Q — (KBy + S2)R"'(BIK +87) = 0 and KB = 0. In other words,
nrank(G(s)) = rank(D) implies that there exists a K that solves the CGCARE (4.1).

(3) < (4): From Statement (/) of Lemma 4.4, we have G(—s5)TG(s) = C(shy —A) " 'B+R,
where A , E and C are as defined in equation (4.3). Further, from Proposition 4.7 it is evident
that nrank(G(s)) = nrank(G(—s)” G(s)). Therefore, we have

nrank(G(s)) = nrank (G(—s)" G(s)) = nrank (6(s12n —AA)_IE—i—R) (4.29)
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Define the nonsingular matrices

I 0 by (shy—A)"'B
R 2nA ,andUz:: 2n ( 2n )

U1 =
C(shy—A)"! I 0 Iy

Recall that sE — H = [“Izngg _IE } Therefore, pre-multiplying (sE — H) with U; and post-
multiplying it with U, we have

~

Slzn —A 0
Ui(sE—H)Up = . A (4.30)
0 ~C(shy—A)"'B—R

Since U; and U, are nonsingular and nrank(sl, —X) = 2n, from equation (4.30) we have

-~

nrank(sE — H) = nrank (U, (sE — H)U,) = nrank(sh, —A) +nrank (6(5[2n —A)'B+ R)
= 2n+nrank (G(—s)" G(s)) (4.31)

Using equation (4.29) and equation (4.31), we therefore infer that

nrank(G(s)) = rank(D) < nrank (G(—s)" G(s)) = rank(R)
< nrank(sE —H) = 2n+ rank(R).

(4) < (5): Define the matrices

(I, 0 0 —BR!] A 0 0 0]

0 I, 0 SR! 0 I 0 0
Z) = VARES

0 0 I, 0 0 0 Inr O

0 0 0 L R'ST -R'BY 0 L]

It is easy to verify that

[ A—B,R'ST ~B,R'BI B, 0
—Q+SHRIST —(A—BR'SIYT 0 0 g S
Z\HZ) = Q+SRTS; —(A=BRTS) = )\ EZy =
0 B{ 0 0 0 Or,r
I 0 0 0 R

Therefore, Z,(sE — H)Z, = diag (sEr —H,, —R). Since Z and Z, are nonsingular matrices,
we have nrank(sE — H) = nrank (Z,(sE —H)Z,). Thus,
sE,—H, O
nrank(sE — H) = nrank _| =2n+rank(R) < nrank (sEy —Hy) = 2n.
0 —R
(4.32)
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Define the nonsingular matrices

I 0 by (shy—A;)"'B
Uy = 2n Cand Uy := 2n ( 2n r) r
Cr(SIZn _Ar)_l Im—r 0 Im—r

Therefore, pre- and post-multiplying (sEy — Hy) with Uz and Uy, respectively we have

shy — Ay 0
U3 (SEr — Hr) U4 = 1 (4.33)
0 —Cr(Slzn —Ar)_ B,

Using equation (4.33) to compute nrank(sE, — Hy) we have

nrank (sEy — Hy) = nrank (Us (sEy — Hy) Uy)

Slzn —Ar 0
0 —Cy(shy —A;)"'B;

= nrank

= nrank(sh, —A;) +nrank (Cr(slzn —Ar)*lBr) (4.34)
Since nrank (sh, —Ay) = 2n, using equation (4.32) and equation (4.34) we infer that
nrank (sEy — Hy) = 2n < nrank (Cr(slgn —Ar)_lBr) =0< Cy(shy —Ar)_lBr =0. 4.35)

Thus, from equation (4.32) and equation (4.35), we have Statement (4) < Statement (35).
(5) < (6): The impulse response corresponding to Cy(shy, —A;) !B, is given by

*
t

h(t) := Cre’'B, = ECrAiBI.
=0 "

Therefore, it is clear that Cy (sl —Ar)*lB;r = 0 if and only if CrAfBr =0 forall /€ N.
(6) = (7): We prove this using induction.
Base case:(k = 0) For ¢ = 1, from Statement (6) we have

A —BR'BY| |B
CeABr =0= |0 BT| |

G i . —0=BI0B, =0.

From Statement (/) of Lemma 4.1, we know that é =Q- Szi?\*ng > 0. Hence, using the
property of positive-semidefinite matrices we have BIT OB, =0= 0B, =0.
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Induction step: Assume Q/giBl =0for 0 < i< (k—1). We prove that éngl =0.

- . - N 2k—1 - .
AR [o BT] A -BR'BI| | A —B,R'B! A  —BR'BT| | B
o " Hi_g AT -0 AT -0 AT 0
_ 2%k—1  _
. - A —BR'B] AB)
=[-8y —@my) | T -
- -0 A —0B,
i omrsl (i —mrsr]” [ —mk '8l [AB
~ o —(gBl)T} N 2N 2 N 2~ 2 N 2~ 2 1
-0 —AT -0 —AT -0 —AT 0
- 2k—3 .
F - A —BR'B} A2B,
= |—(QAB))T (AZBI)T] - - e
- -0 —AT —QAB,
. N 2k—3
F A  —BR'B] A%B,
=10 (AzBl)T} 5 e . (4.36)

Proceeding in a similar way and using the assumption that égiBl =0forall 0 <i< (k—1),
we infer from equation (4.36) that
A BzﬁlBgl [(1)%@31)

CrAng)Br: 0 (l)k(ANkBl)T}|: _
0

N ] = —(A*B))TQ(A*B)).
-0 —AT

(4.37)

We know from Statement (6) that CrAg%H)Br = 0. Therefore, from equation (4.37) we get

(A*B|)T Q(A*B}) = 0. From Statement (/) of Lemma 4.1 we know that Q > 0 and hence, from
equation (4.37) we get éngl = 0. This completes the proof.
(7) = (6): We first claim that AfBr =col <ZEB1,O>. We prove this using induction.
Base case: ({ =0) By = col(By,0) is true trivially.
Induction step: Assume ALB, = col(A'B;,0), we prove that AT B, = col(AT!By,0).
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p—1pT p—1pT Al Al+1
A“lBr: A —BsR 82 By _ A —BsR 82 A*Bq _ A+Bl
r

-0 _KT 0 -0 —AVT 0 —QKKBI
(4.38)

Since, QA¥B; =0 for all k€ N. Therefore, from equation (4.38) we get AYt! B, =co1(A‘t!B;,0).
Hence, by mathematical induction we infer that A“B; = col(A’By,0) for all £ € N. Therefore,
for all £ € N, we have C;ALB, = [0 BT ] [X%’?l} =0. n
Statement (4) of Theorem 4.8 leads to a necessary condition for the solvability of a CGCARE
that reveals interesting system-theoretic interpretations about the systems that admit CGCARE
solutions. We present this necessary condition as a corollary next. This corollary would be

crucially used to prove the second main result of this chapter (Theorem 4.16).
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A necessary condition for the solvability of CGCARE

Corollary 4.9. Consider the singular LOR Problem 2.1 with its corresponding Hamilto-
nian pencil pair (E,H) as defined in equation (4.2). If the corresponding CGCARE (4.1)

admits a solution, then det(sE — H) is the zero polynomial.

\. J

Proof: Since (sE — H) € R[s](?»t®)x(204m) and rank(R) < m, from Statement (4) of Theorem
4.8 we must have det(sE —H) = 0. [
Theorem 4.8 and Corollary 4.9 bring out some interesting facts pertaining to the optimal trajec-
tories of singular LQR problems and hence, we briefly discuss these facts next.

Note that for a single-input controllable system we have rank [b Ab - Anflb] =n.
However, from Theorem 4.8 we know that CGCARE is solvable if and only if QA'b = 0 for all
i € N. Thus, we must have Q = 0. Hence, for single-input singular LQR problems CGCARE is

solvable only for the trivial case when Q = 0. Hence, we have the following corollary

[ Single-input singular LQR problems do not admit CGCARE solution

Corollary 4.10. Consider the singular LOR Problem 2.21 with Q # 0. Then, the corre-
sponding CGCARE does not admit any solution.

J

Proof: The proof follows from the discussion above this corollary. |

As motivated earlier the DAEs in equation (4.2) arise on application of PMP to the LQR
problem. It follows from PMP that, for the regular case, the optimal solutions of the LQR prob-
lem are nothing but suitably chosen trajectories of the Hamiltonian system (these are the optimal
trajectories corresponding to a Lambda-set A of the Hamiltonian pencil such that 6(A) C C_).
For the singular case, since the Hamiltonian system becomes a singular descriptor system, PMP
becomes applicable only to the smooth trajectories of the Hamiltonian system. Let us assume
that (x*,z*,u*) € €°(R,R?**P) be a trajectory in the Hamiltonian system. All such trajecto-
ries are called the stationary trajectories. For a regular LQR problem, since det(sE —H) # 0,
from Proposition 2.17 we infer that the Hamiltonian system is autonomous. Further, it is known
that the trajectories of an autonomous system are smooth but not compactly supported (expo-
nential). Hence, the stationary trajectories in case of regular LQR problems are all smooth
but not compactly supported. To the contrary, from Lemma 4.4 it is clear that the condition
det(sE — H) = 0 from Corollary 4.9 means that the transfer function G(s) = C(sh, —A)~'B
is not invertible as a rational matrix. Hence, by Proposition 2.17 we infer that the Hamiltonian
system is non-autonomous. Hence, the stationary trajectories corresponding to such problems
are compactly supported and smooth. However, this non-autonomy of the Hamiltonian system
is only necessary, and not sufficient, for CGCARE solvability. Accordingly, the necessary and
sufficient condition in this regard can be inferred from Theorem 4.9, which is as follows. The
non-autonomy of the Hamiltonian system implies that it admits inputs. Theorem 4.9 reveals

that CGCARE solvability is equivalent to the input cardinality of the Hamiltonian system being
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precisely equal to m — rank(R) (see [TMRO09] for more on non-autonomous systems and input
cardinality).

Now that we have found the solvability conditions for a CGCARE we present an inter-
esting property of the solutions of a CGCARE. It is clear from the definition of CGCARE that
for a symmetric matrix K to be a solution of CGCARE (4.5), K must satisfy the linear matrix
equation KB; = 0. Interestingly, apart from such linear matrix equations any solution K of the
CGCARE (4.5) must satisfy certain other algebraic relations also; this is the content of the next
lemma.

f Algebraic relations satisfied by the solutions of a CGCARE

Lemma 4.11. Consider the singular LOR Problem 4.2 with the corresponding reduced
Hamiltonian system be as given in equation (4.10). Let K = KT € R®*® be a solution to
the corresponding CGCARE (4.5). Then,

KA'B; =0, foralli€N. (4.39)

Proof: We use mathematical induction for the proof.

Base case: (i = 0) Since K is a solution of CGCARE (4.5), it is evident that KB; = 0.
Induction step: Assume KA'B; = 0. We prove that KA B; = 0. Note that solution K of the
CGCARE must satisfy

ATK + KA+Q— (KBy+S)R ' (BIK +8%)=0
= ATK+KA+Q—KB,R"'BYK —KB,R™'S} —$;R'BIK — SRS} =0
= (A=BR'SHTK+K(A—ByR'SY) + (00— SR 'ST) —KB,R'BIK =0
= ATK+KA+Q—KB,R 'BYKk =0. (4.40)

Post-multiplying equation (4.40) by A'B,, we have
ATKA'B, + KA™'B| + QA'B; — KB,R~'BY KA'B, = 0. (4.41)

Since CGCARE (4.5) admits a solution, from Statement (7) of Theorem 4.8 it is evident that
égiBl = (. In addition to this using the induction hypothesis KA'B=0on equation (4.41), we
have KAt!B; = 0. This completes the proof of this lemma. |

Recall that all the results in Chapter 2 and Chapter 3 are true only for the case when det(sE —
H) # 0. However, from Corollary 4.9 we know that a necessary condition for the solvability of
a CGCARE is det(sE — H) = 0. Therefore, the results in the preceding chapters (Chapters 2
and 3) cannot be applied to the case when a singular LQR problem admits CGCARE solutions.
Further, for the single-input case, the reduced Hamiltonian system (4.10) and the transformed
Hamiltonian system in equation (4.9) is the same. This leads to some interesting comparison
between the results of this section and some of the results obtained in 