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Abstract— In this paper we deal with a special class of
Lyapunov equations which we call circulant Lyapunov equations.
These are Lyapunov equations arising from system matrices
that are circulant. Here we bring out new theoretical insights
into such Lyapunov operators. We show that, under a suitable
projection map, two-variable polynomials are related to circu-
lant Lyapunov operators. We also give necessary and sufficient
conditions for the solvability of a circulant Lyapunov equation
using two dimensional Fourier transform operation (2D-DFT)
performed on a specially constructed matrix. Using these links
among circulant Lyapunov operators, two-variable polynomials
and 2D-DFT, an algorithm to solve circulant Lyapunov equa-
tions using 2D-DFT is developed in this paper.
Keywords: Circulant matrices, Two dimensional discrete
Fourier transform, Lyapunov equations.

1. INTRODUCTION

Lyapunov equations and operators arise in many areas of
physics and mathematics. They find applications in stability
theory of systems [7], linear-quadratic optimization and filter-
ing [11], model order reduction [1], and many other fields of
mathematics and control: see [8] and references therein. This
has resulted in an interest in the theoretical and numerical
aspects of Lyapunov equations and operators. In this paper,
we focus on a special class of Lyapunov operators, which
we call circulant Lyapunov operators. Circulant Lyapunov
operators LA(P) := AP + PAT are those operators where
A is a circulant matrix, that is, A ∈ RN×N has its (m,n)-
th element given by amn = c(n−m)modN, where ck ∈ R for
k = 0,1, . . . ,N−1. In most applications, where linear matrix
equations of the form AP+PAT = Q are studied, matrices
A and Q are known and matrix P needs to be computed.
Further, P and Q matrices in such cases are considered to
be Hermitian. However, since the results presented in this
paper are applicable to non-Hermitian P and Q as well, we
do not assume P and Q to be Hermitian. Note that matrix
A, in general, is related to the system under investigation
and is called the system matrix. There are various examples
in which the matrix A representing the system dynamics is
circulant in nature: for example rings of identically coupled
systems [12, Section 5.3], multiagent systems with circulant
interconnection [9] etc. Stability analysis of such systems
results in circulant Lyapunov operators.

In general, there are numerous methods to solve Lyapunov
equations. However, none of these methods are well-suited
for exploiting the structure present in circulant Lyapunov
operators. In this paper, we achieve faster algorithm for
solving circulant Lyapunov equations by associating Fourier
analysis to these equations. We first show that circulant
Lyapunov operators are intricately linked to two-variable
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polynomials under a suitable projection map. Fourier analysis
and their one-variable polynomial interpretations are well-
known in the literature: see [10, Section 2.4]. Analogously,
two-variable polynomials are related to two dimensional dis-
crete Fourier transform (2D-DFT). Using these links among
circulant Lyapunov operators, two-variable polynomials and
2D-DFT, we give necessary and sufficient conditions for the
solvability of circulant Lyapunov equations. These conditions
help us devising an algorithm (Algorithm 4.1) to compute
solutions of circulant Lyapunov equations using 2D-DFT.

It is important to note here that the results presented in this
paper are a generalization of the results in [3], in the sense
that this paper deals with all classes of circulant Lyapunov
operators as opposed to the unit cyclic case (a special case
of circulant Lyapunov operators) in [3]. The rest of the paper
is organized as follows. Section 2 contains notation and
preliminaries required for the paper. In Section 3, we estab-
lish the link between two-variable polynomials and circulant
Lyapunov operators. The main results of the paper that link
Lyapunov operator, 2D-DFT and two-variable polynomials
are presented in Section 4. Concluding remarks are presented
in Section 5.

2. NOTATION AND PRELIMINARIES

We follow standard notation in this paper: R, C, Z
and N denote the sets of real numbers, complex num-
bers, integers and natural numbers, respectively. The sym-
bol C[x1,x2, . . . ,xn] denotes the ring of polynomials in
n variables with complex coefficients. We use the no-
tation 〈p1, p2, . . . , pn〉 to denote the ideal generated by
p1, p2, . . . , pn: the ring usually being clear from the context.
We represent the variety of an ideal I as V(I). The symbol
j represents

√
−1, unless otherwise specified. We use A =

[amn]m,n=0,1,...N−1 to represent a matrix A with element amn
in the (m+1)-st row and (n+1)-st column. Conventionally,
the elements of any matrix A i.e. amn are indexed as m,n =
1,2, . . . ,N. However, since we are dealing with polynomials,
their degrees and DFT in this paper, we use 0 as the starting
index for m and n. This means that the element in the 1-st
row and 1-st column of matrix A is represented as a00. A
matrix of the form

[
BT

1 BT
2
]T is represented as col(B1,B2).

The symbol 0N×M denotes the zero matrix of dimension N×M.
The symbol IN represents an N× N identity matrix. We use
the symbols X and Y to represent column vectors of the
form col(1,x,x2, . . . ,xN−1)∈RN[x] and col(1,y,y2, . . . ,yN−1)∈
RN[y], respectively. The following symbols A ? B, A � B
and A � B represent 2D-convolution, entry-wise division
and entry-wise product operation (also known as Hadamard
product) between matrices A and B, respectively. We use f(•)
to denote the 1D-DFT operator. The symbol F (•) represents
the 2D-DFT operator and F−1(•) represents the inverse 2D-
DFT operator. Further, we use the following symbol for the
Vandermonde matrix related to DFT (see [3] for preliminaries



on DFT and two-variable polynomials).

ΩN :=


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) · · · ω(N−1)2

,ω := e− j 2π
N ,N ∈ N. (1)

Matrices of the form
E :=

[
01×(N−1) 1

IN−1 0(N−1)×1

]
∈ RN×N (2)

are used extensively in this paper. For easy reference, we call
such a matrix the unit cyclic matrix of order N. Note that the
matrix E is also in controller canonical form with character-
istic polynomial XE(s) := sN−1. Further, the eigenvalues of
the unit cyclic matrix of order N are the Nth roots of unity
i.e. {1,ω,ω2, . . . ,ωN−1}, where ω := e− j 2π

N .

A. Circulant matrices and Lyapunov operators
A matrix H = [hmn]∈RN×N is said to be a circulant matrix

of order N if it has the following form

H = circ(c0,c1, . . . ,cN−1) =


c0 c1 · · · cN−1
cN−1 c0 · · · cN−2

...
...

. . .
...

c1 c2 · · · c0

 , (3)

i.e., hmn = c(n−m)modN. Note that the unit cyclic matrix E,
defined in equation (2), is also a circulant matrix. The set of
circulant matrices forms a vector space over C of dimension
N: see [6, Chapter 3]. A set of basis matrices for circulants
of order N is given by {IN,E,E2, · · · ,EN−1}, where E is the
unit cyclic matrix of order N. In other words, any circulant
matrix H ∈ RN×N can be written as H = ∑

N−1
k=0 ckEk, where

ck ∈ R. Further, the eigenvalues of the matrix H, defined in
equation (3), are given by the elements of the 1D-DFT vector
f([c0 c1 · · · cN−1]).

Another important object of focus in this paper is the
special linear matrix equation (operator) called the Lyapunov
equation (operator). We review some basic properties of such
an equation (operator) next. Given a matrix A ∈ RN×N, the
continuous-time Lyapunov operator LA : CN×N → CN×N is
defined as LA(P) := AP+PAT .

In this paper two standard results on Lyapunov operators
is often used. One among them is in [3, Proposition 2.1] and
other dealing with the solvability of Lyapunov equations is
stated below for the ease of reference.

Proposition 2.1. Consider a Lyapunov equation AP +
PAT = Q, where A ∈ RN×N,P, Q ∈ CN×N. Let Λ :=
{λ0,λ1, . . . ,λN−1} ⊂ C be the set of eigenvalues (counted
with multiplicities) of A. Suppose λm + λn = 0 for some
m,n=0, . . . ,N−1. Then, exactly one of the following is true.

1) There exist infinitely many P such that AP+PAT = Q.
2) There exists no P such that AP+PAT = Q.

Further, if λm+λn 6= 0 for all m,n = 0,1, . . . ,N−1 then there
exists a unique P ∈ CN×N such that AP+PAT = Q.

We call the Lyapunov operator LA(•) singular when a
pair of eigenvalues of A sums to zero. The name stems from
the fact that in such a case there exists a nonzero matrix
V ∈ CN×N such that LA(V ) = 0.

In this paper, we deal with Lyapunov operators of a special
structure. For the ease of reference, we call such operators
circulant Lyapunov operators. We define it next.

Definition 2.2. Consider A∈RN×N and P∈CN×N. Suppose A
is circulant. Then the Lyapunov operator LA : P 7→ AP+PAT

is called a circulant Lyapunov operator.

3. LINK TO TWO-VARIABLE POLYNOMIALS

In this section we show that two-variable polynomials
are related to circulant Lyapunov operators under a suitable
projection map.

Let E ∈ RN×N be the unit cyclic matrix as discussed in
Section 2, XE(s) := sN− 1 is the characteristic polynomial
of E. Consider the polynomial ring C[x,y] and the ideal A :=
〈XE(x),XE(y)〉 ⊂ C[x,y]. Define the map

Π : C[x,y]−→ C[x,y]/A. (4)

Under the action of Π, an element p ∈ C[x,y] goes to [p].
Note that the Gröbner basis corresponding to the ideal A is
the set {XE(x),XE(y)} itself. Hence, [p] is uniquely repre-
sented by the remainder obtained on division of p by XE(x)
and XE(y) (see [3, Section E] for preliminaries on Gröbner
basis). According to [3, Proposition 2.2], this remainder’s
leading monomial will have multidegree that is less than that
of xN and yN. Therefore, every remainder upon division by
xN−1 and yN−1 is going to be a polynomial with monomials
being xky`, where 06 k, `6 N−1. Hence, any element g(x,y)
in C[x,y]/A can be written as g(x,y) = ∑

N−1
m,n=0 αmnxmyn,

where αmn ∈C. Consider G = [gmn]m,n=0,1,...,N−1 ∈CN×N such
that g(x,y) =XT GY. Then it is easy to see that αmn = gmn for
every m,n = 0,1, . . . ,N−1. Thus g(x,y) and G has a one-to-
one correspondence and we call G the coefficient matrix of
g(x,y). This one-to-one correspondence between g(x,y) and
its coefficient matrix G is crucially used in this paper.

Consider P∈CN×N and p(x,y)∈C[x,y] such that p(x,y) :=
XT PY. We prove that the operation Π

(
(xk + yk)p(x,y)

)
has an interesting link with the circulant Lyapunov operator
LA(•), where A = Ek. Note that the summands of (xk +
yk)p(x,y) = xk p(x,y)+ yk p(x,y) can be rewritten as

xk XT PY =

[
X
X̂

]T [0k×N 0k×k
P 0N×k

][
Y
Ŷ

]
,

yk XT PY =

[
X
X̂

]T [0N×k P
0k×k 0k×N

][
Y
Ŷ

]
,

where X̂ := col
(
xN,xN+1, . . . ,xN+k−1

)
and Ŷ :=

col
(
yN,yN+1, . . . ,yN+k−1

)
. Action of the map Π defined

in (4) is equivalent to substituting xN and yN in the
polynomial (xk + yk)p(x,y) by 1. Hence, Π

(
xk p(x,y)

)
+

Π

(
yk p(x,y)

)
=

[
X
X̂

]T [
0N×k Ek

0k×k 0k×N

][
0k×N 0k×k

P 0N×k

][
Y
Ŷ

]
+[

X
X̂

]T [0N×k P
0k×k 0k×N

][
0k×N 0k×k
(Ek)T 0N×k

][
Y
Ŷ

]
= XT

(
EkP + P(Ek)T

)
Y.

Thus, we have

Π

(
xk p(x,y)

)
+Π

(
yk p(x,y)

)
= XT LEk(P)Y. (5)

Thus, the coefficient matrix of the polynomial
Π
(
(xk + yk)p(x,y)

)
is LEk(P). This leads us to the

first main result of this paper.



Theorem 3.1. Consider the Lyapunov operator LA(•),
where A ∈ RN×N is a circulant matrix i.e. A := ∑

N−1
k=0 akEk ∈

CN×N and ak ∈ R. Suppose V ∈ CN×N\0 and γ ∈ C. Define
the two-variable polynomial associated with V as v(x,y) :=
XTV Y. Consider the map Π : C[x,y]−→C[x,y]/A where the
ideal A⊂C[x,y] is defined as A := 〈xN−1,yN−1〉. Then the
following are equivalent
(1) LA(V ) = γV . (2) Π

(
∑
N−1
k=0 ak(xk + yk)v(x,y)

)
= γv(x,y).

Proof. Define P ∈CN×N such that XT PY := p(x,y). Since Π

is a linear operator, we have

Π

(N−1

∑
k=0

ak(xk + yk)p(x,y)
)
=

N−1

∑
k=0

akΠ

(
(xk + yk)p(x,y)

)
(6)

Using equation (5) in equation (6), we have
Π

(
∑
N−1
k=0 ak(xk + yk)p(x,y)

)
= ∑

N−1
k=0 akXT

(
EkP +

P(Ek)T
)

Y = XT
((

∑
N−1
k=0 akEk

)
P + P

(
∑
N−1
k=0 akEk

)T)
Y =

XT
(

AP+PAT
)

Y, i.e.,

Π

(N−1

∑
k=0

ak(xk + yk)p(x,y)
)
= XT LA(P)Y. (7)

This shows that LA(P) is the coefficient matrix of the
polynomial Π

(
∑
N−1
k=0 ak(xk + yk)p(x,y)

)
.

(1 ⇒ 2) : From equation (7) we therefore have
Π

(
∑
N−1
k=0 ak(xk + yk)v(x,y)

)
= XT LA(V )Y = XT

(
γV
)

Y =

γ

(
XTV Y

)
= γv(x,y).

(2 ⇒ 1) Using equations (7), we have Π

(
∑
N−1
k=0 ak(xk +

yk)v(x,y)
)
= γv(x,y)⇒ XT LA(V )Y = XT γV Y⇒LA(V ) =

γV. This completes the proof of Theorem 3.1.

From Theorem 3.1 we have a two-variable polynomial in-
terpretation of eigenmatrices of circulant Lyapunov operators.
This is the polynomial version of [3, Proposition 2.1] for
circulant Lyapunov operators. Next we propose a theorem
which provides a solvability condition for a circulant Lya-
punov equation from two-variable polynomial perspective.

Theorem 3.2. Consider the polynomial ring C[x,y] and the
ideal A := 〈xN − 1,yN − 1〉. Define the map Π : C[x,y] →
C[x,y]/A. Given G,R ∈ CN×N define g(x,y) := XT GY,
r(x,y) := XT RY. Then the following statements are true.

(a) Suppose g(x,y),r(x,y) ∈ C[x,y] satisfy Π

(
(xk +

yk)g(x,y)
)
= r(x,y), where k ∈ N and k < N. Suppose(

(2`+ 1)N
)

mod(2k) 6= 0 for some ` ∈ Z. Then g(x,y)
is unique.

(b) Suppose g(x,y),r(x,y) ∈ C[x,y] satisfy Π

(
∑
N−1
k=0 ak(xk +

yk)g(x,y)
)
= r(x,y), where k ∈ N and k < N. Suppose

∑
N−1
k=0 2ak cos

(
π(m−n)k

N

)
ω

(m+n)k
2 6= 0 for every m,n =

0,1,2, . . . ,N−1. Then g(x,y) is unique.

Proof. (a): Let h(x,y) := XT HY, H ∈CN×N be a polynomial

such that Π

(
(xk + yk)h(x,y)

)
= r(x,y). Then

(xk + yk)g(x,y)=a(x,y)(xN−1)+b(x,y)(yN−1)+ r(x,y) (8)

(xk + yk)h(x,y)=c(x,y)(xN−1)+d(x,y)(yN−1)+ r(x,y) (9)

for some a(x,y),b(x,y),c(x,y),d(x,y) ∈ C[x,y]. Subtracting
equation (9) from (8), we have

(xk + yk) [g(x,y)−h(x,y)] =
[a(x,y)− c(x,y)] (xN−1)+ [b(x,y)−d(x,y)] (yN−1) (10)

Define p(x,y) := [g(x,y)−h(x,y)] and q1(x,y) :=
[a(x,y)− c(x,y)] and q2(x,y) := [b(x,y)−d(x,y)].
Rewriting equation (10), we have

(xk + yk)p(x,y) = q1(x,y)(xN−1)+q2(x,y)(yN−1) (11)

Let ω := e− j 2π
N . Using the fact that ωmN = ωnN = 1 and

evaluating the right hand side of equation (11) at x = ωm

and y = ωn, for every m,n = 0,1,2, . . . ,N−1, we have

q1(ω
m,ωn)(ωmN−1)+q2(ω

m,ωn)(ωnN−1) = 0. (12)

Therefore, the left hand side of equation (11) becomes

(ωmk +ω
nk)p(ωm,ωn) = 0 for every m,n = 0,1, . . . ,N−1. (13)

It can be easily verified that

ω
mk +ω

nk = e− j 2π
N mk + e− j 2π

N nk = 2cos
(

π(m−n)k
N

)
ω

(m+n)k
2 .

Since |ω
(m+n)k

2 | 6= 0, we have ωmk +ωnk is zero if and only
if cos

(
π(m−n)k

N

)
= 0 i.e. for some ` ∈ Z, we have

π(m−n)k
N

=
(2`+1)π

2
⇒ m−n =

(2`+1)N
2k

(14)

Since
(
(2`+1)N

)
mod(2k) 6= 0 for all `∈Z, therefore ωmk+

ωnk 6= 0. Hence, from equation (13), we conclude that for
every m,n = 0,1,2, . . . ,N−1, we have

p(ωm,ωn) = 0⇒ g(ωm,ωn) = h(ωm,ωn). (15)

Rewriting equation (15) in terms of Vandermonde matrix ΩN

shown in equation (1), we have ΩT
N GΩN = ΩT

N HΩN. Since
the elements of the set

{
1,ω,ω2, . . . ,ωN−1

}
are distinct in

C, we have ΩN to be a nonsingular matrix. Therefore, we
conclude that G = H, i.e., g(x,y) = h(x,y). This completes
the proof of statement (a) of Theorem 3.2.
(b): Here we replace (xk + yk) in equations (8)-(11) by
∑
N−1
k=0 ak(xk+yk). Then equation (13) becomes ∑

N−1
k=0 ak(ω

mk+
ωnk)p(ωm,ωn) = 0. Under the assumptions given in state-
ment (b), we have ∑

N−1
k=0 ak(ω

mk +ωnk) 6= 0 for every m,n =
0,1, . . . ,N−1. This leads us to equation (15) of the proof of
statement (a). Rest of the proof is exactly the same as that
of statement (a). Finally, we have g(x,y) = h(x,y).

The next theorem reveals the relation between nonsingular-
ity of circulant Lyapunov operator LA(•) and the uniqueness
of the polynomial g(x,y) dealt with in Theorem 3.2.

Theorem 3.3. Consider the polynomial ring C[x,y] and the
ideal A := 〈xN − 1,yN − 1〉. Define the map Π : C[x,y] →



C[x,y]/A. Consider the circulant Lyapunov operator LA(•),
where A := ∑

N−1
k=0 akEk. Let g(x,y),r(x,y) ∈ C[x,y] be such

that Π

(
∑
N−1
k=0 ak(xk + yk)g(x,y)

)
= r(x,y). Then LA(•) is

nonsingular if and only if g(x,y) is unique.

Proof. Let R,G ∈ CN×N be such that r(x,y) =:
XT RY,g(x,y) =: XT GY.
(If:) From equation (7), we have Π

(
∑
N−1
k=0 ak(xk +

yk)g(x,y)
)
= XT LA(G)Y. Therefore, XT LA(G)Y = XT RY.

Since g(x,y) and its coefficient matrix G has a one-to-one
correspondence, we have g(x,y) unique means there exists
a unique G such that LA(G) = R. Therefore, LA(•) is an
injective operator. Since LA(•) : CN×N→ CN×N and CN×N is
a finite dimensional vector space, we have LA(•) is not only
injective but surjective as well. Hence, LA(•) is a bijective
operator. This means that LA(•) is nonsingular.
(Only if:) Given LA(•) is nonsingular and CN×N being a
finite dimensional vector space, we can infer that LA(•) is
bijective. Therefore, for each R ∈CN×N there exists a unique
G ∈ CN×N such that LA(G) = R ⇒ XT LA(G)Y = XT RY.
Recall that LA(G) is the coefficient matrix of
Π

(
∑
N−1
k=0 ak(xk + yk)g(x,y)

)
, where g(x,y) = XT GY. The

polynomial corresponding to R is r(x,y) = XT RY. Therefore,
XT LA(G)Y = Π

(
∑
N−1
k=0 ak(xk + yk)g(x,y))

)
= r(x,y).

Since G is unique and we know that there is a one-to-
one correspondence between polynomials in C[x,y]/A and
matrices in CN×N, we conclude that g(x,y) is unique.

Thus, Theorem 3.3 is a polynomial analogue of Proposition
2.1. As discussed in Section 2-A, the periodic structure of
circulant matrices ties these matrices to Fourier analysis: see
[6, Chapter 3]. The natural question that arises now is: are
circulant Lyapunov operators linked to Fourier analysis? We
answer this in the next section using the insights obtained in
Theorem 3.3.

4. LINK TO 2D-DFT
In this section, we bring out the link between circulant

Lyapunov operators and 2D-DFT using the polynomial link
we established with circulant Lyapunov operators in Section
3. The next theorem is one of the main results of this paper
and it is the basis for a 2D-DFT based algorithm to solve
circulant Lyapunov equations.

Theorem 4.1. Consider the polynomial ring C[x,y] and
the ideal A := 〈xN − 1,yN − 1〉. Define the map Π :
C[x,y] −→ C[x,y]/A. Let P,Q,R ∈ CN×N be such that
p(x,y) := XT PY, q(x,y) := XT QY and r(x,y) := XT RY.
Let F (P),F (Q) and F (R) be the 2D-DFT matrices of
P,Q and R, respectively. Then the following are equivalent:
(i) Π

(
p(x,y)q(x,y)

)
= r(x,y). (ii) F (P)�F (Q) = F (R).

Proof. (i)⇒ (ii) : Given Π

(
p(x,y)q(x,y)

)
= r(x,y), there

exists a(x,y),b(x,y) ∈ C[x,y] such that

p(x,y)q(x,y) = a(x,y)(xN−1)+b(x,y)(yN−1)+ r(x,y). (16)

Now, we evaluate equation (16) at x = ωm and y = ωn for
every m,n = 0,1,2, . . . ,N−1, where ω = e− j 2π

N . As shown in
the proof of Theorem 3.2, a(x,y)(xN−1)+b(x,y)(yN−1) =

0 at x = ωm and y = ωn for every m,n = 0,1,2, . . . ,N−1.
Therefore, for every m,n = 0,1,2, . . . ,N−1 we have

p(ωm,ωn)q(ωm,ωn) = r(ωm,ωn) (17)

Let F (P) =: [emn],F (Q) =: [ fmn] and F (R) =: [gmn], where
m,n = 0,1, . . . ,N− 1. As discussed in [3, Section B], com-
putation of 2D-DFT of a matrix U ∈ CN×N is essentially the
computation of XTUY at x=ωm and y=ωn for every m,n=
0,1,2, . . . ,N− 1. Hence, it is clear that emn = p(ωm,ωn),
fmn = q(ωm,ωn) and gmn = r(ωm,ωn). Rewriting equation
(17) in matrix form, we have F (P)�F (Q) = F (R).
(ii)⇒ (i) : Given F (P)�F (Q) = F (R). Therefore, for
every m,n = 0,1, . . . ,N−1 and ω := e− j 2π

N , we have

p(ωm,ωn)q(ωm,ωn) = r(ωm,ωn). (18)

Note that the variety of A, denoted by V(A), is the set{
(α,β ) ∈ C2|αN = 1 and β N = 1

}
. Let I

(
V(A)

)
be the

ideal consisting of all polynomials g(x,y) ∈ C[x,y] such that
g(α,β ) = 0 for all (α,β )∈V(A). Since equation (18) is true
for every m,n = 0,1, . . . ,N− 1, we have p(α,β )q(α,β )−
r(α,β ) = 0 for all (α,β ) ∈V(A). Therefore, p(x,y)q(x,y)−
r(x,y) ∈I

(
V(A)

)
.

By Hilbert’s Nullstellensatz1, we infer that p(x,y)q(x,y)−
r(x,y) ∈ I

(
V(A)

)
=
√
A. Note that V(A) ⊂ C2 is a finite

set and therefore A is a zero-dimensional ideal2. Hence using
[5, Proposition 2.7], we can verify that A is a radical ideal
i.e.
√
A= A. Therefore,

p(x,y)q(x,y)− r(x,y) ∈
√
A⇒ p(x,y)q(x,y)− r(x,y) ∈ A

⇒Π

(
p(x,y)q(x,y)− r(x,y)

)
= 0. (19)

Since3 LM
(

r(x,y)
)
� (xy)N−1, we have Π

(
r(x,y)

)
= r(x,y).

It therefore follows from equation (19) that

Π

(
p(x,y)q(x,y)

)
=Π

(
r(x,y)

)
⇒Π

(
p(x,y)q(x,y)

)
= r(x,y).

This completes the proof of Theorem 4.1.

Using Theorem 4.1 and results from Section 3, we can
now, not only establish a relation between 2D-DFT and
circulant Lyapunov operators but also formulate an algorithm
to solve circulant Lyapunov equations using 2D-DFT. The
next corollary and the discussion thereafter reveal this.

Corollary 4.2. Consider the circulant Lyapunov equation
AP+PAT = Q with A := ∑

N−1
k=0 akEk ∈RN×N and P,Q ∈CN×N.

Define J ∈ RN×N such that XT JY = ∑
N−1
k=0 ak(xk + yk). Then,

the following are equivalent:

(i) Π

(
∑
N−1
k=0 ak(xk + yk)p(x,y)

)
= q(x,y),

(ii) F (J)�F (P) = F (Q).

1Hilbert’s Nullstellensatz: If F is an algebraically closed field and J is an
ideal in F[x1,x2, . . . ,xn], then I (V(J)) =

√
J.
√
J is the radical of J.

The radical of J, denoted by
√
J, is the set {g ∈ F[x1, . . . ,x2] : gm ∈ J for

some m > 1}. Further, an ideal J is said to be a radical ideal if
√
J= J.

2An ideal J ⊂ C[x1,x2, . . . ,xn] is a zero-dimensional ideal if V(J) ⊂ Cn

is a finite set: see [5, Chapter 2, Finiteness Theorem] for details.
3 Let f = ∑α aα xα ∈C[x1,x2, . . . ,xn] and let � be a term ordering. Then

the leading monomial of f is LM( f ) := xd( f ) (with coefficient 1), where the
multidegree d( f ) of f is defined as d( f ) := max(α ∈ Zn

�0 : aα 6= 0): see [4,
Chapter 2].



Proof. Define g(x,y) = XT JY. Then from The-
orem 4.1 we conclude that Π

(
g(x,y)p(x,y)

)
=

q(x,y) if and only if F (J)�F (P) = F (Q).
This means that given matrices A and Q in the equation

AP + PAT = Q, computation of P is possible using the
formula P = F−1 (F (Q)�F (J)). However, for the oper-
ation � i.e. element-wise division to be well-defined, every
element of F (J) needs to be nonzero. Therefore, a relevant
question to ask here is: when will every element of F (J) be
nonzero? The next few results formulate the condition under
which every entry of F (J) is nonzero. Although a complete
characterization of the class of J matrices that results in every
element of F (J) being nonzero requires further investigation,
the next theorem and corollary throw some light on this
question. For ease of exposition, we state Theorem 4.4 after
the following corollary.

Corollary 4.3. Define J ∈ RN×N such that XT JY := a(xk +
yk), where a∈R\{0}, k ∈N\{0} and k < N. Let F (J) be the
2D-DFT matrix of J. Assume A := aEk. Then, every element
of F (J) is nonzero if and only if

(
(2`+ 1)N

)
mod(2k) 6=

0 for each ` ∈ Z.
Further, if the above condition holds then the Lyapunov
equation AP+PAT = Q is solvable for each Q ∈ CN×N.

The proof of Corollary 4.3 directly follows from that
of Theorem 4.4 next and hence we skip that. Before we
formulate necessary and sufficient conditions for the general
case of all circulant matrices A (in Theorem 4.4), we first
link the case of singular Lyapunov equation (i.e. Proposition
2.1) with division by zero. More precisely, Lyapunov operator
singularity is equivalent to encountering a division by zero
(during entry-wise division operation �) as mentioned in
Corollary 4.3. Further, when dividing by zero, if the numer-
ator also is zero, this is precisely the case when we have
solvability for the singular Lyapunov operator, i.e. Case 1 of
Proposition 2.1. Further, from Corollary 4.3 it is clear that for
the case when A = aEk, entry-wise division is well-defined
if N is odd. On the other hand, when N is even there can be
instances when entry-wise division F (Q)�F (J) fails. The
next theorem is a generalized version of Corollary 4.3.

Theorem 4.4. Define J ∈ RN×N such that XT JY =
∑
N−1
k=0 ak(xk + yk), where ak ∈ R. Let F (J) be the 2D-DFT

matrix of J. Define ω := e− j 2π
N . Then every element of F (J)

is nonzero if and only if for each m,n = 0,1,2, . . . ,N−1
N−1

∑
k=0

2ak cos
(

π(m−n)k
N

)
ω

(m+n)k
2 6= 0. (20)

Further, if equation (20) holds then the Lyapunov equation
AP+PAT = Q is solvable for each Q ∈CN×N, with A ∈RN×N

defined as A := ∑
N−1
k=0 akEk.

Proof. Let us write the 2D-DFT matrix F (J) as F (J) =
[F (J)mn]m,n=0,1,...,N−1. Then we have (see [3, Section B])
F (J)mn = ∑

N−1
p=0

(
∑
N−1
q=0 Jpqωqm

)
ω pn, i.e.,

F (J) =
N−1

∑
k=0

ak(ω
mk +ω

nk) =
N−1

∑
k=0

ak(e− j 2π
N mk + e− j 2π

N nk) (21)

=
N−1

∑
k=0

2ak cos
(

π(m−n)k
N

)
ω

(m+n)k
2 (22)

(If): Given ∑
N−1
k=0 2ak cos

(
π(m−n)k

N

)
ω

(m+n)k
2 6= 0 for each

m,n = 0,1,2, . . . ,N−1. Therefore, from equation (22) we
infer that every entry of F (J) is nonzero.
(Only if): Since F (J)mn 6= 0, From equation (22), we
conclude that ∑

N−1
k=0 2ak cos

(
π(m−n)k

N

)
ω

(m+n)k
2 6= 0 for every

m,n = 0,1, . . . ,N−1.
Further, from Statement (b) of Theorem 3.2, it is clear that
under condition (20), there exists a unique polynomial p(x,y)
with coefficient matrix P ∈ CN×N such that Π

(
∑
N−1
k=0 ak(xk +

yk)p(x,y)
)
= q(x,y) for a given q(x,y) =: XT QY. From the

discussion in Section 3, we know that coefficient matrix of
Π

(
∑
N−1
k=0 ak(xk + yk)p(x,y)

)
is AP+PAT . Clearly, XT (AP+

PAT )Y = XT QY. Hence the Lyapunov equation AP+PAT =
Q for each Q ∈ CN×N is solvable under condition (20).

Theorem 4.4 customized to the special case when A = aEk

results in some interesting properties which we presented in
Corollary 4.3. The next theorem shows that the eigenvalues
of a circulant Lyapunov operator are the same as that of the
elements of the 2D-DFT matrix corresponding to coefficient
matrix J formed in Theorem 4.4. This theorem gives a check
on the nonsingularity of circulant Lyapunov operators using
the 2D-DFT matrix F (J) of J.

Theorem 4.5. Consider a circulant Lyapunov operator
LA(•), where A := ∑

N−1
k=0 akEk and define J ∈RN×N such that

XT JY := ∑
N−1
k=0 ak(xk + yk). Let Λ be the set of eigenvalues

of LA(•) and let Γ be the set of elements of F (J). Then,
Λ = Γ.
In particular, F (J) has every element nonzero if and only if
LA(•) is nonsingular.

Proof. We first prove that Λ ⊇ Γ. From equation (21), the
elements of F (J) = [F (J)]m,n=0,1,...,N−1 are given by

F (J)mn =
N−1

∑
k=0

ak

(
ω

mk +ω
nk
)

where ω = e− j 2π
N . (23)

Note that ωm and ωn are eigenvalues of E for any
m,n = 0,1, . . . ,N− 1. Let vm,vn ∈ CN be the eigenvectors
of E corresponding to eigenvalues ωm,ωn, respectively.
Note that Ekvm = ωmkvm and Ekvn = ωnkvn. We construct
the matrix Vmn := vmvT

n ∈ CN×N. Note that LA(Vmn) =(
∑
N−1
k=0 akEk

)
vmvT

n + vmvT
n

(
∑
N−1
k=0 akEk

)T
. Hence, we have

LA(Vmn) =
(N−1

∑
k=0

ak(ω
mk +ω

nk)
)

Vmn (24)

Note that equation (24) is true for all m,n = 0,1, . . . ,N−1.
This proves that each element of F (J) given by equation
(23) is an eigenvalue of LA(•). Therefore, Λ⊇ Γ.
Next we prove that Λ ⊆ Γ. Let γ be any eigenvalue
of LA(•) and V be the corresponding eigenmatrix i.e
LA(V ) = γV . Let v(x,y) := XTV Y. Since A = ∑

N−1
k=0 akEk and

LA(V ) = γV , from Theorem 3.1, we have Π

(
∑
N−1
k=0 ak(xk +

yk)v(x,y)
)
= γv(x,y). Let J ∈RN×N be the coefficient matrix

of ∑
N−1
k=0 ak(xk + yk) i.e. ∑

N−1
k=0 ak(xk + yk) = XT JY. Then by

Theorem 4.1, we have F (J)�F (V ) = γF (V ). Let F (J) =:
[αmn]m,n=0,1,...,N−1 and F (V ) =: [βmn]m,n=0,1,...,N−1. Thus we



have αmnβmn = γβmn for each m,n= 0,1, . . . ,N−1. Now, we
claim that βmn 6= 0 for at least one m,n = 0,1, . . . ,N− 1.
Suppose this is not true, then βmn = 0 for all m,n= 0,1, . . .N−
1 i.e. F (V ) = 0. Then, we have F (V ) = 0 ⇒ ΩTV Ω =
0 ⇒ V = 0 (Since Ω are nonsingular). But V ∈ CN×N\0.
Hence, F (V ) 6= 0. This means there exists at least one
nonzero element in F (V ). Let (p,q)-th component of F (V )
is nonzero. Then, αpqβpq = γβpq ⇒ αpq = γ . Thus for any
eigenvalue γ of LA(•) there exists an index (p,q) such that
αpq = γ , where αpq ∈F (J). Thus Λ⊆ Γ.
Therefore, Λ = Γ. This completes the proof of Theorem 4.5.
Therefore, F (J) has every element nonzero if and only if
LA(•) is nonsingular.

From Theorem 4.5 it is clear that the matrix F (J) having
at least one zero element means that the corresponding cir-
culant Lyapunov operator is singular. Thus from Proposition
2.1, Theorem 4.4 and Theorem 4.5 it is clear that if equation
(20) is false then a circulant Lyapunov equation LA(P) = Q
has either no solution or has infinitely many solutions. Note
that a singular, circulant Lyapunov equation LA(P) = Q
have infinitely many solutions if Q ∈ img

(
LA(•)

)
and no

solutions if Q 6∈ img
(
LA(•)

)
. Therefore a relevant question

is: Is there a relation between F (J) and Q that serves as an
indication as to when LA(P) = Q has no solutions or has
infinitely many solutions. For ease of exposition, we explain
this for the case when A := aE. From Corollary 4.3 it is clear
that LaE(P) =Q has either no solution or has infinitely many
solutions when N is even.

Further, it is clear that whenever F (J) has zero elements
then either there is non-uniqueness in the solution of a
Lyapunov equation or there are no solutions to the Lyapunov
equation. Further, it also establishes that if there is a zero
element in F (J) then the corresponding position of the
matrix F (Q) must also be zero for the circulant Lyapunov
equation to be solvable. In such a case we encounter a zero
by zero division during element-wise division operation. This
is precisely the condition when there are infinitely many
solutions to the Lyapunov equation4.
The next corollary reveals the link between two-variable
polynomials, circulant Lyapunov operator and 2D-DFT.

Corollary 4.6. Let A := ∑
N−1
k=0 akEk and J ∈ CN×N be

such that ∑
N−1
k=0 ak(xk + yk) =: XT JY. Define A := 〈xN −

1,yN−1〉 ⊂ C[x,y]. Assume g(x,y),r(x,y) ∈ C[x,y] such that
Π

(
∑
N−1
k=0 ak(xk +yk)g(x,y)

)
= r(x,y). Then the following are

equivalent: (a) LA(•) is nonsingular. (b) g(x,y) is unique.
(c) F (J) has every element nonzero.

Since this corollary is a direct consequence of Theorem
3.3 and Theorem 4.5, we skip the proof. All the results in
the paper finally leads to the following algorithm.

4For the case when F (J) and F (Q) have zero in their corresponding
position, e.g. say αmn and βmn are zero, where F (Q) =: [αmn] and F (J) =:
[βmn], then the Lyapunov equation has infinitely many solutions. Hence, one
can choose an arbritrary value of αmn/βmn (say τ as given in Step 9 of
Algorithm 4.1) to get to a solution of the Lyapunov equation.

Algorithm 4.1 A 2D-DFT based algorithm to solve circulant
Lyapunov equation i.e. LA(P) = Q.

Input: a0,a1, . . . ,aN−1 ∈R, Q ∈CN×N and A = ∑
N−1
k=0 akEk.

Output: Solution P ∈ CN×N of AP+PAT = Q.

1: Construct v := [a1 a2 · · · aN−1] and J :=
[

2a0 v
vT 0

]
.

2: Compute 2D-DFT of Q and J. Result: F (Q) =: [αmn]
and F (J) =: [βmn], respectively.

3: Construct F (P) = [κmn] as follows
4: for m = 1 : N do
5: for n = 1 : N do
6: if βmn 6= 0 then
7: κmn = αmn/βmn.
8: else
9: κmn = τ , where τ ∈ CN×N (see Footnote 4).

10: end if
11: end for
12: end for
13: Use inverse 2D-DFT to find P = F−1

(
F (P)

)
.

5. CONCLUSION

In this paper we have shown that under a suitable projec-
tion map Π, two-variable polynomials are related to circulant
Lyapunov operators (Theorem 3.3 and Theorem 3.1). Using
this two-variable polynomial interpretation of circulant Lya-
punov operators, we showed that nonsingularity of Lyapunov
operators is a necessary and sufficient condition for every
element of the 2D-DFT matrix corresponding to a suitably
constructed matrix to be nonzero (Theorem 4.5). These links
among circulant Lyapunov operators, two-variable polynomi-
als and 2D-DFT matrix formulated in Corollary 4.6 revealed
how the solutions to circulant Lyapunov equations can be
found using 2D-DFT. Using these results we devised an
algorithm to solve circulant Lyapunov equations (Algorithm
4.1). The algorithm is not only an order of magnitude faster
than the conventional algorithms, like that in [2], to compute
Lyapunov equation solutions but can also be parallelized.
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